MINISTÉRIO DA INTEGRAÇÃO REGIONAL MIR SECRETARIA DE IRRIGAÇÃO

DERIVAÇÃO DE ÁGUAS DO RIO SÃO FRANCISCO PARA REGIÕES SEMI-ÁRIDOS DOS ESTADOS DE PERNANBUCO, CEARÁ PRAÍBA E RIO GRANDE DO NORTE

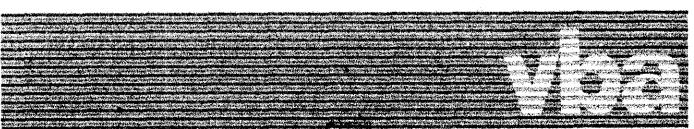
ESTUDOS BÁSICOS DAS DISPONIBILIDADES HÍDRICAS E DO SISTEMA ADUTOR DA TRANSPOSIÇÃO

RELATÓRIO GERAL

CONVÊNIO MIR / SECRETARIA DOS RECURSOS HÍDRICOS DO ESTADO DO CEARÁ - SRH

FOLHA DE DADOS - GED/SRH

TIPO DE DOCUMENTO: Kolonio
Identidade GED: 159
Lote: 1481
N° de Registro: 36 0819
Autores: <u>SRH MIRIVBA</u>
Programa:
Título: Estudos Diosecos das disponibilidades hi-
dricos o do vistemo aditor do Transporção
Sub-Titulo 1: Rolations Juna
Sub-Titulo 2:
N° de Páginas: 206 folho + 32 planto
Volume:
Tomo:
Editor: VBA
Data de Publicação (mês/ano): 1994
Local de Publicação: Fataliza
Localização da Obra
Tipo de Empreendimento:
□ Barragem □ Açude □ Adutora □ Canal / □ Outro
Eixo de Transp.
Rio / Riacho Barrado: Fonte Hidrica: Rio 500 Francisco
Bacia: 500 Francisco
Sub-bacia:
Municípios:
Distrito:
Microregião:
Estado: Pana Ria Grand Monte, Panasta.


MINISTÉRIO DA INTEGRAÇÃO REGIONAL - MIR SECRETARIA DE IRRIGAÇÃO

DERIVAÇÃO DE ÁGUAS DO RIO SÃO FRANCISCO PARA REGIÕES SEMI-ÁRIDAS DOS ESTADOS DE PERNAMBUCO, CEARÁ, PARAÍBA E RIO GRANDE DO NORTE

ESTUDOS BÁSICOS DAS DISPONIBILIDADES HÍDRICAS E DO SISTEMA ADUTOR DA TRANSPOSIÇÃO

RELATÓRIO FINAL

Lote: U14	81 - <u>Prep (X)</u> <u>Scan ()</u>	Index ()
Projeto N	· 159	
Volume		
Qtd A4_	Qtd. A3	
Qtd. A2	Qtd A1	
Qtd A0	Outros	
		CONVÊNIO
	MIR/ SECRETARIA D	OS RECURSOS HÍDRICOS DO ESTADO DO CEARÁ - SRH

BA CONSULTORES LTDA

ÍNDICE

0159

0.00003

ÍNDICE

2 - OBJETIVOS DOS ESTUDOS	3 6 7 9
PARTE A - ESTUDOS DAS DISPONIBILIDADES HÍDRICAS	7
Capitulo 1 - INTRODUÇÃO	9
Capítulo 2 - OS SISTEMAS ESTUDADOS	-
a. Ceará	10
. b. Paraíba	10
. c. Rio Grande do Norte	11
Capítulo 3 - A METODOLOGIA	13
3.1 - REGRA BÁSICA DE OPERAÇÃO DOS RESERVATÓRIOS	14
3.2 - A Operação dos Reservatórios Incluindo Bombeamento de Vazões da Transposição do Rio São Francisco	16
3.3 - As Alternativas Estudadas	17
Capítulo 4 - OS RESULTADOS OBTIDOS	18
Capítulo 5 - CONFRONTO DISPONIBILIDADES X DEMANDAS	47
PARTE B - ESTUDO DO SISTEMA ADUTOR	52
Capítulo 1 - INTRODUÇÃO	53
1.1 - Objetivo e Condições do Desenvolvimento do Trabalho	5 4
1.2 - ANTECEDENTES	5 4
1.2.1 - Apresentação do Anteprojeto	54
1.2.2 - Descrição do Anteprojeto	55
1.2.3 - Concepção e Fases de Implantação	58
1.2.4 - Os Custos de Investimentos do Anteprojeto	60

Capítulo 2	- ANÁLISE DA CONCEPÇÃO TÉCNICA ORIGINAL DO TRAÇADO, DADOS BÁSICOS E METODOLOGIA PARA O ESTUDO DE ALTERNATIVAS
	NÁLISE DA CONCEPÇÃO TÉCNICA E CONDICIONANTES DA CAPTAÇÃO E O TRAÇADO DO ANTEPROJETO NO TRECHO 1: SÃO FRANCISCO-JATI
2.1.1	- A Captação do Anteprojeto: Alternativas Estudadas
2.1.2	2 - Condicionantes e Comentários sobre a Solução de Captação Adotada no Anteprojeto
2,1.3	3 - O Traçado do Anteprojeto: Alternativas
2.1.4	- Condições Operacionais e Perdas por Evaporação nos Lagos dos Reservatórios do Trecho 1
2.1.5	5 - Desapropriações, Problemas Sócio-Ambientais e Prazos para Implantação
	NÁLISE DA CONCEPÇÃO TÉCNICA E CONDICIONANTES DO TRAÇADO DO NTEPROJETO NO TRECHO 2: SALGADO ➡ PIRANHAS ➡ APODI
2.2.1	- O Traçado do Anteprojeto: Alternativas Estudadas para o Traçado Global do Trecho 2
2.2.2	2 - Condicionantes e Comentários sobre as Soluções de Ajuste Global e de Trechos Localizados do Traçado do Trecho 2
2.2.3	3 - Condições Operacionais e Perdas por Evaporação nos Lagos dos Reservatórios do Trecho 2
2.2.4	Desapropriações, Problemas Sócio-Ambientais e Prazos para Implantação
	CONDICIONANTES E METODOLOGIA PARA O AJUSTE DO TRAÇADO ÀS CONDIÇÕES ATUAIS DO PROJETO
2.3.1	- Elementos Cartográficos e Topográficos Disponíveis e Recuperação dos Dados do Traçado Original
2.3.2	2 - Análise dos Preços Unitários e Custos Globais de Obras Utilizados como Parâmetros
2.3.3	3 - Seções Tipo e Parâmetros de Custos dos Canais
2.3.4	4 - Dimensionamento e Curvas de Custos de Obras Especiais
2.3.5	5 - Custos Unitários de Energia
2.3.6	6 - Parâmetros Básicos para Estimativa dos Custos das Elevatórias

2.4 - VAZÕES, FASEAMENTO PRELIMINAR DA IMPLANTAÇÃO E PARÂMETROS	90
ECONÔMICO-FINANCEIROS BÁSICOS PARA O ESTUDO DE ALTERNATIVAS	90
2.4.1 - Faseamento das Obras e Séries de Vazões e Volumes Bombeados	90
2.4.2 - Estimativa Preliminar dos Custos de Investimento do Projeto Atual (com Base no Anteprojeto)	90
CAPÍTULO 3 - ESTUDOS DE ALTERNATIVAS DE AJUSTE DO TRAÇADO ORIGINAL DO ANTEPROJETO ÀS CONDIÇÕES ATUAIS	100
3.1 - ALTERNATIVAS DE AJUSTES TRECHO 1: AS CONDIÇÕES ATUAIS DO PROJETO	101
3.1.1 - Alternativas de Ajuste do Traçado Global do Trecho 1	101
3.1.2 - Alternativas de Ajustes Localizados: Canais de Encosta x Barragens do Anteprojeto	101
3.2 - ALTERNATIVAS DO TRECHO 2:	103
3.2.1 - Alternativas de Ajuste do Traçado Global: As Novas Opções de Captação x Traçado para a Transposição SALGADO ⇒ PIRANHAS ⇒ APODI	103
3.2.2 - Alternativas dos Ajustes Localizados: Canais de Encosta x Barragens do Anteprojeto	
3.3 - ESTUDOS COMPLEMENTARES: ANÁLISE DE ALTERNATIVAS DE SUBSTITUIÇÃO DE TÚNEIS POR ELEVAÇÃO ASSOCIADOS A CANAIS	115
Capítulo 4 - O TRAÇADO AJUSTADO ÀS CONDIÇÕES ATUAIS DO PROJETO	118
4.1 - CARACTERÍSTICAS E DADOS BÁSICOS DO TRAÇADO ATUAL AJUSTADO	119
4.2 - Dados Básicos das Barragens Mantidas	119
4.3 - ESTIMATIVA PRELIMINAR DOS CUSTOS COM O TRAÇADO AJUSTADO	119
4.4 - RESULTADOS E CONCLUSÕES	128
ANEXOS	
ANEXO 1 - DESENHOS.	
ANEXO 2 - MEMÓRIA DE CÁLCULO	

1 - APRESENTAÇÃO

O presente documento se constitui no Relatório Final dos "Estudos Básicos das Disponibilidades Hídricas e do Sistema Adutor do Projeto de Transposição das Águas do rio São Francisco" para Bacias Hidrográficas do Semi-árido Nordestino", desenvolvido pela VBA CONSULTORES para o Ministério da Integração Regional - MIR, através de contrato firmado com a Secretaria dos Recursos Hídricos do Estado do Ceará - SRH, no âmbito do convênio estabelecido entre o MIR e a SRH.

Este relatório contém, inicialmente, uma sucinta apresentação dos objetivos dos estudos, e está dividido em duas partes:

- PARTE A: compreendendo o Estudo das Disponibilidades Hídricas;
- PARTE B: compreendendo o Estudo do Sistema Adutor.

Na parte A, o estudo está apresentado em 4 (quatro) rubricas principais, abordando, sequencialmente:

CAPÍTULO 1 - INTRODUÇÃO

CAPÍTULO 2 - OS SISTEMAS ESTUDADOS

CAPÍTULO 3 - A METODOLOGIA

CAPÍTULO 4 - OS RESULTADOS OBTIDOS

CAPÍTULO 5 - CONFRONTO DISPONIBILIDADES X DEMANDAS

Por sua vez, a Parte B, de forma semelhante, compõe-se dos capítulos a seguir:

CAPÍTULO 1 - INTRODUÇÃO

CAPÍTULO 2 - ANÁLISE DA CONCEPÇÃO TÉCNICA DO TRAÇADO ORIGINAL E METODOLOGIA DOS ESTUDOS DE ALTERNATIVAS

Capítulo 3 - Estudos de Alternativas de Ajuste do Traçado do anteprojeto às Condições Atuais

CAPÍTULO 4 - O TRAÇADO AJUSTADO ÀS CONDIÇÕES ATUAIS DO PROJETO

2 - OBJETIVOS DOS ESTUDOS

1 - OBJETIVOS DOS ESTUDOS

Os estudos ora apresentados tiveram objetivos eminentemente básicos, com o sentido de fornecer elementos fundamentais para a elaboração do Projeto das Obras de Transposição do Rio São Francisco, de responsabilidade de equipe específica do Ministério da Integração Regional.

Nesta perspectiva, esses estudos se propuseram a alcançar dois grandes objetivos:

- analisar, do ponto de vista hídrico, o comportamento do sistema de barragens de cada bacia que deverá regularizar a oferta d'água, para diversas alternativas de vazões transpostas do rio São Francisco, conforme apresentado na Parte A deste relatório;
- reestudar o traçado do sistema de adução, em especial no referente às alternativas de transposição dos talvegues e vales transversais, conforme Parte B.

2 - JUSTIFICATIVAS E ESCOPO DOS ESTUDOS

A essencialidade destes estudos se configurou, nitidamente, a partir de questionamentos levantados sobre o projeto, em especial em relação ao:

- incremento real da oferta d'água em cada bacia, e efetiva necessidade face às demandas e potencialidades locais;
- viabilidade da manutenção do caminhamento e sua configuração, principalmente no tocante à utilização de quase 40 barragens nas ultrapassagens dos talvegues;
- impropriedade de implantação da barragem Aurora como elemento básico para vencer o divisor entre o Ceará e a Paraíba.

Em relação à oferta d'água, estudou-se o desempenho das barragens principais, existentes e programadas, sem e com o aporte das águas do São Francisco; para as alternativas deste aporte foram identificados os ganhos obtidos, a partir de regras operacionais estabelecidas, que melhoram sobremaneira os resultados da Transposição, confrontando-os com as demandas potencialmente existentes.

O tratamento estritamente hídrico desenvolvido pelo estudo não permitiu, obviamente, analisar as diversas alternativas de vazão transposta com base nos custos e beneficios associados, de forma a poder selecionar técnica e economicamente aquela mais indicada; de qualquer modo, foram determinados os elementos necessários para o desenvolvimento de estudos posteriores de viabilidade.

No que tange ao traçado, reexaminou-se de modo minucioso aquele definido no anteprojeto, face à redução acentuada da vazão de projeto: a vazão transposta passou de cerca de 300 m³/s para 180 m³/s, tendo ainda uma etapa inicial de somente 70 m³/s. Cada ultrapassagem de vale com emprego de barragem foi detalhadamente analisada sobre carta na

escala 1:10.000 e a partir de elementos de base do anteprojeto e definições posteriores fixadas pelo MIR, buscando-se todas as possíveis alternativas de ultrapassagem, incluindo a retirada ou redução de barragens; a comparação de custos integrais entre estas alternativas, a partir de critérios claramente justificados, conduziu à seleção adequada.

De modo semelhante, foram pesquisadas, sobre as mesmas cartas, as alternativas para substituição da barragem Aurora, escolhendo-se com base na avaliação aquela mais indicada.

Os resultados foram entregues à Coordenação Técnica do Projeto São Francisco do Ministério da Integração Regional, para o desenvolvimento dos estudos de campo (locação topográfica e geotécnica), e posterior elaboração do Projeto Básico.

PARTE A - ESTUDO DAS DISPONIBILIDADES HÍDRICAS

CAPÍTULO 1 - INTRODUÇÃO

1 - INTRODUÇÃO

O Projeto de Transposição de águas do rio São Francisco tem dois grandes objetivos:

- aumentar a oferta d'água, de forma a permitir, além do abastecimento humano, o aproveitamento com irrigação de extensas manchas de solos de elevada potencialidade agrícola;
- incrementar, significativamente, a garantia do suprimento d'água.

Em relação ao primeiro, existe na área de influência da Transposição para os estados do Ceará, Rio Grande do Norte e Paraíba, um potencial de solos da ordem de 782 mil hectares sendo 303 mil no Ceará, 357 mil no Rio Grande do Norte e 121 mil na Paraíba - além de uma população humana superior a 2,5 milhões de habitantes; com os recursos hídricos locais que poderiam ser tornados disponíveis poder-se-ia irrigar não mais do que 184 mil ha, e, ainda por cima, com nível de garantia incompatível com este tipo de atividade.

Aliás, o acréscimo deste nível de garantia por si só já justificaria plenamente a Transposição: face ao regime hidroclimático e às condições geológicas cristalinas locais, os sistemas de barragens, existentes e possíveis, apresentam sempre risco de entrar em colapso, mesmo se operados adequadamente. No caso do Ceará, por exemplo, a vazão total (da ordem de 80 m³/s) do sistema do Jaguaribe tem uma garantia real de 90%: no tempo restante, há uma garantia de 80% em fornecer apenas metade da vazão, ocorrendo colapso completo em 2% do período total (dois anos em cada cem). Com as águas do São Francisco poder-se-á também, eliminar, definitivamente, este risco de colapso, e garantir, com 100%, uma vazão mínima, p.ex., igual à metade da vazão de f=90%.

CAPÍTULO 2 - OS SISTEMAS ESTUDADOS

100015

2 - OS SISTEMAS ESTUDADOS

Os sistemas de barragens estudados compreenderam, para cada bacia, as barragens de grande porte que receberão diretamente a afluência das águas transpostas, e, através de regras de operação adequadas, poderão aumentar tanto a oferta com a garantia das vazões regularizadas.

Os sistemas estudados foram os seguintes:

a. CEARÁ

- Barragem Castanhão: a construir, localizada no final do Médio e início do Baixo Jaguaribe, drenará uma bacia hidrográfica de 43.864 mil km²; tal barragem se constituirá, como se demonstra nitidamente neste relatório, em elemento extremamente importante para a Transposição; ainda que sua capacidade máxima prevista seja de 6.751,6 hm³, o volume realmente disponível para regularização será de 4.451,6 hm³, visto que o restante se constituirá em volume de espera de controle de enchentes;
- Açude Orós: com 1.956,3 hm³, situado montante do Castanhão, controla uma bacia hidrográfica de 24.583 hm²; mesmo não recebendo diretamente as águas do São Francisco, dentro da concepção atual de transposição, ela foi considerada no estudo por dois motivos:
 - a) trata-se do mais importante manancial existente no Jaguaribe, responsável por cerca de metade das vazões hoje disponíveis, e que operando conjuntamente com o Castanhão proporcionará uma melhoria substancial na oferta d'água local;
 - b) poderá, em uma alternativa futura para a Transposição, inclusive analisada nos primeiros estudos efetuados nos anos 80, receber diretamente aportes de águas transpostas através da bacia do rio Cariús;
- as demais barragens representativas, programadas ou existentes, ou se encontram em paralelo e a jusante do sistema Orós/Castanhão, como é o caso do sistema Banabuiú/Pedras Brancas, ou não sofrerão influência direta da Transposição, a não ser no desenvolvimento do balanço oferta x demanda para o conjunto de bacia do Jaguaribe.

b. PARAÍBA

Na concepção do traçado do Sistema Adutor presentemente desenvolvida, na qual as águas da Transposição escoarão pelos cursos naturais dos rios do Peixe (inicialmente) e Piranhas (mais jusante), os volumes não afluirão qualquer barragem no trecho que atravessa a Paraíba; como se verá, posteriormente, a obrigatoriedade da captação ser feita a fio d'água ocasionará uma situação desfavorável em relação s demais bacias, com redução do desempenho hídrico

do sistema no Estado; a possível alternativa de parcela do volume aduzido ser direcionado para o rio Piancó, logo após a transposição da divisa Ceará/Pernambuco, também não implicará em resultados significativos no efeito compensador de reservatórios, mesmo no caso da parcela restante que poderia atingir o açude Estevam Marinho-Mãe-D'água.

c. RIO GRANDE DO NORTE

c.1. Bacia Apodi

Açude Santa Cruz: recém implantado com volume de acumulação de 553 hm³, controla uma bacia de 4.264 km², sendo o único reservatório de porte em todo o Vale do Apodi beneficiado pela Transposição.

c.2. Bacia do Piranhas - Açu

- Barragens Oiticica e Armando Ribeiro Gonçalves: estas duas barragens, a primeira a implantar com 1.300 hm³ e a segunda já construída com 2.440 hm³, se localizam no trecho final do rio Piranhas - Açu, sendo praticamente contíguas: enquanto Oiticica drena 34.363 km², a outra drena 37.183 km²; tal configuração conduziu a que se as tratasse neste estudo como um sistema único. As demais barragens da bacia Piranhas-Açu, existentes em grande número, não são diretamente atingidas pela Transposição, sendo importantes apenas no processo de elaboração do balanço hídrico da bacia.

O mapa 1, a seguir, mostra espacialmente o sistema integral de barragens, nos três estados, que foi analisado.

Todos os dados básicos - tais como características geométricas e curvas cota x área x volume, série de deflúvios naturais, dados de evaporação e pluviometria - foram coletados nos estudos anteriormente elaborados, como listados a seguir:

- Bacia do Jaguaribe (Orós e Castanhão)
 Fonte: Secretaria dos Recursos Hídricos do Ceará "Plano Estadual de Recursos Hídricos", 1991
- Bacia do Apodi (Santa Cruz)
 Fonte:
 - a) DNOCS "Plano Diretor para o Aproveitamento dos Recursos de Solo e Água no Vale do Apodi", 1978
 - b) DNOCS "Projeto Executivo da Barragem Santa Cruz", 1988

Cabe ressaltar que, deste último, foram obtidos somente os dados geométricos da barragem, visto que a série de deflúvios nele constante foi considerada de muito má qualidade, optando-se por usar os dados do estudo anterior.

- Bacia do Piranhas/Açu (Oiticica e Armando R. Gonçalves)
 Fonte:
 - a) DNOCS "Plano Diretor Hidroagrícola do Vale do Baixo Açu-RN", 1988
 - b) DNOCS "Projeto Executivo da Barragem Oiticica", 1992

De modo semelhante à situação anterior, do Projeto da Barragem foram coletadas somente os elementos especiais das suas características, os demais dados hidroclimatológicos sendo obtidos do Plano Diretor.

A existência de todas estas informações no estudos citados, justifica a desnecessária transcrição das mesmas para o presente relatório.

CAPÍTULO 3 - A METODOLOGIA

3 - A METODOLOGIA

3.1 - REGRA BÁSICA DE OPERAÇÃO DOS RESERVATÓRIOS

A efetiva disponibilidade de um reservatório pode ser representada pela vazão contínua a ser retirada de um reservatório e a frequência de falhas no suprimento desta vazão. Para isto, normalmente, recorre-se a técnicas de simulação da operação dos reservatórios, utilizando como variável básica de entrada uma série histórica de vazões, ou séries sintéticas geradas mediante modelos estocásticos.

A regra operacional usualmente utilizada para a simulação é a seguinte:

$$V_{i+1} = V_i + Q_{af_i} - Evap_i(A_i + A_{i+1})/2 - Q_{lib_i}$$

$$Q_{lib_{i}} = \begin{cases} Q_{reg} :: V_{i+1} \ge V_{min} \\ \\ 0 :: (V_{i} + Q_{af_{i}} - Evap_{i}(A_{i} + A_{i+1})/2) < V_{min} \\ \\ Q_{falha} = V_{i} + Q_{af_{i}} - Evap_{i}(A_{i} + A_{i+1})/2 - V_{min} :: V_{i+1} < V_{min} \end{cases}$$

$$V_{i+1} \leq V_{max} \implies i = 1,2,3,...n$$

onde: V_{i+1} , V_i são os volumes estocados no reservatório no final dos intervalos "i+1" e "i" da simulação respectivamente; A $_{i+1}$ A $_i$ são as áreas superficiais no reservatório no final dos intervalos "i+1" e "i" da simulação, respectivamente; Q $_{libi}$, é a vazão liberada pelo reservatório no intervalo "i" da simulação; Q $_{reg}$, é a vazão regularizada que está sendo testada; Q $_{afi}$, é a vazão mensal afluente no mês "i"; Evap $_i$, é lâmina evaporada no mês "i"; V $_{min}$, é o volume operacional mínimo do reservatório; V $_{max}$, é o volume operacional máximo do reservatório e "n" o número de intervalos a serem simulados.

O resultado assim obtido é denominado "vazão garantida f % do tempo" e significa que, para o período simulado (normalmente de 50 a 80 anos de vazões mensais: foi possível fornecer aquela vazão durante f% do tempo, ou que o número de falhas foi (100 - f) % do tempo simulado.

Habitualmente f = 90%, e Q_{r90} é uma vazão usualmente calculada para dimensionar e avaliar o desempenho dos reservatórios.

Durante a elaboração do Plano Estadual de Recursos Hídricos do Ceará observou-se que, para os reservatórios do semi-árido cearense, a estrutura temporal das falhas apresentava concentrações inter-anuais, com períodos de falhas até superiores a dois anos, que tornavam o conceito de vazão garantida 90% do tempo muito arriscado para o

desenvolvimento de atividades como a agricultura irrigada, principalmente com culturas permanentes, e o abastecimento humano; claro está que estas atividades não suportam períodos tão prolongados de déficit no suprimento hídrico.

Modificou-se, então, o conceito de "vazão garantida", associando à mesma a obrigação de suprir durante os períodos de falha uma vazão menor: no PERH, de valor igual à 50% da vazão garantida 90% do tempo, sendo que esta vazão deve ser suprida durante 80% do tempo restante.

Para isto foi modificada a regra operacional básica de simulação, incorporando um denominado "volume de alerta", volume a partir do qual a liberação de vazões é restringida à citada fração da vazão regularizada.

A regra operacional utilizada foi a seguinte:

$$V_{i+1} = V_i + Q_{af} - Evap_i (A_i + A_{i+1})/2 - Q_{lib}$$

$$Q_{lib_{i}} = \begin{cases} Q_{reg} :: V_{i} \geq V_{alerta} \\ \\ \%Q_{reg} :: V_{alerta} \geq V_{i} \geq V_{min} \\ \\ Q_{falha} < \%Q_{reg} :: V_{i+1} \geq V_{min} \\ \\ 0 :: (V_{i} + Q_{af_{i}} - Evap_{i}(A_{i} + A_{i+1})/2 \leq V_{min} \end{cases}$$

$$V_{i+1} \le V_{max} \implies i = 1,2,3,....n$$

onde: $%Q_{reg}$ representa uma fração da vazão regularizada e V_{alerta} um volume predeterminado, maior do que o volume mínimo operacional do reservatório.

Assim, mediante pesquisas iterativas no PERH foi possível definir a regra operacional que fornecesse o maior Q_{r90} (atendimento 90% do tempo) e que durante 8% do tempo restante fornece $Q_{r90}/2$, associado a um determinado volume de alerta. Atualmente o conceito de volume de alerta é uma ferramenta importante na gestão dos recursos dos reservatórios, sinalizando o volume a partir do qual é necessário fazer restrições às demandas para evitar longos períodos de falhas.

3.2 - A OPERAÇÃO DOS RESERVATÓRIOS INCLUINDO BOMBEAMENTO DE VAZÕES DA TRANSPOSIÇÃO DO RIO SÃO FRANCISCO.

Para a análise do comportamento dos reservatórios com a incorporação de vazões bombeadas pelo sistema de transposição, foi adotada uma regra operacional similar à utilizada no PERH, com as seguintes alterações:

- como um dos grandes objetivos da Transposição é aumentar a garantia, evitando-se os períodos de colapso total (2% no caso da regra operacional do PERH), impôs-se que o "novo" volume de alerta fosse capaz de fornecer Q_{r90}/2 durante todo o período restante (10% do tempo);
- introduziu-se um nível de bombeamento, acima do qual não seria necessário o bombeamento da transposição; tal alerta de bombeamento não só minimizaria bastante o custo de energia de bombeamentos desnecessários, como evitaria as perdas por vertimento.

A regra operacional utilizada foi a seguinte:

$$V_{i+1} = V_i + Q_{af_i} - Evap_i(A_i + A_{i+1})/2 - Q_{lib_i} + Q_{sf_i}$$

$$\begin{aligned} Q_{lib_i} = &\begin{cases} Q_{reg} \, \therefore \, V_i \geq V_{\text{alerta}} \\ \\ \% Q_{reg} \, \therefore \, V_{\text{alerta}} \geq V_i \geq V_{\text{min}} \\ \\ Q_{\text{falha}} < \% Q_{reg} \, \therefore \, V_{i+1} \leq V_{\text{min}} \end{aligned}$$

$$\begin{aligned} Q_{sf_i} &= \begin{cases} Q_{bomb} \ \therefore \ V_i \leq V_{aler.bom.} \\ \\ 0 \ \therefore \ V_i > V_{aler.bom.} \end{cases} \\ V_{i+1} &\leq V_{max} \ \Rightarrow i = 1,2,3,\dots, n \end{aligned}$$

onde Q_{sfi} é a vazão transposta do rio São Francisco no período "i" e Q_{bomb} é uma vazão de bombeamento definida previamente. Assim é possível pesquisar qual seria a vazão Q_{r90} com "volume de alerta" fornecida por um reservatório, onde são injetadas vazões transpostas sempre que o nível operacional do mesmo seja menor que um dado volume predefinido.

3.3 - AS ALTERNATIVAS ESTUDADAS

Para cada um dos sistemas de reservatórios, já descritos em item anterior deste relatório, foram estudadas as alternativas de Transposição de vazões de até 65 m³/s, com intervalos de 5 em 5 m³/s; no caso do Estado do Ceará, estas afluências foram consideradas entrando tanto no reservatório de Orós como no reservatório Castanhão.

Foram pesquisados para cada reservatório cinco valores de "alerta de bombeamento", correspondentes, respectivamente, a 20%, 40%, 60% e 80% da capacidade útil dos mesmos.

A vazão pesquisada foi a maior vazão que satisfazia o seguinte critério:

- . Q_r é fornecida durante 90 % do tempo simulado;
- . Q/2 é fornecida durante os 10% de tempo restante.

Associado à esta vazão definiu-se dois níveis do reservatório: o correspondente ao volume a partir do qual é fornecida a vazão de emergência $(Q_r/2)$ e o volume a partir do qual é iniciado (ou suspenso) o bombeamento de vazões transpostas.

CAPÍTULO 4 - OS RESULTADOS OBTIDOS

000024

4 - OS RESULTADOS OBTIDOS

As tabelas 4.1,4.2,4.3,4.4 apresentam um resumo dos resultados obtidos nas simulações para os reservatórios de Orós (CE) e Castanhão (CE), Santa Cruz (RN) e Armando Ribeiro Gonçalves e Oiticica, tratados de forma conjunta (RN).

A primeira coluna das tabelas, denominada " Q_{RF}^{SF} ", apresenta as vazões regularizadas finais segundo o critério já descrito.

A segunda coluna das "V_{AB}", representa o "alerta de bombeamento", ou volume a partir do qual é iniciado/interrompido o bombeamento.

A terceira coluna " Q_{SF} " representa a vazão nominal bombeada pela Transposição para aquele reservatório; a quarta coluna representa o volume vertido pelo reservatório " Q_{S} ", transformado em vazão continua fictícia.

A quinta coluna "T_B" reflete os tempos de bombeamento apresentados pela simulação; a sexta coluna é um índice de análise dos resultados abaixo descrito (RBCH).

A sétima coluna é a vazão continua fictícia bombeada efetivamente pela Transposição para aquele reservatório "Q_{SF,efe}" a oitava coluna, "RG", exprime o quociente entre a vazão efetivamente regularizada e a soma aritmética da vazão regularizada por cada reservatório acrescida da vazão bombeada pela transposição, sendo esta última expressa em forma de vazão fictícia continua (sétima coluna).

A última coluna apresenta o ganho absoluto de vazão, expresso em m^3/s , entre a vazão regularizada total e a soma de Q_{190} com a efetiva contínua transposta.

Dos resultados de todos os reservatórios simulados pode-se obter as seguintes conclusões fundamentais, válidas para a gama de alternativas estudadas:

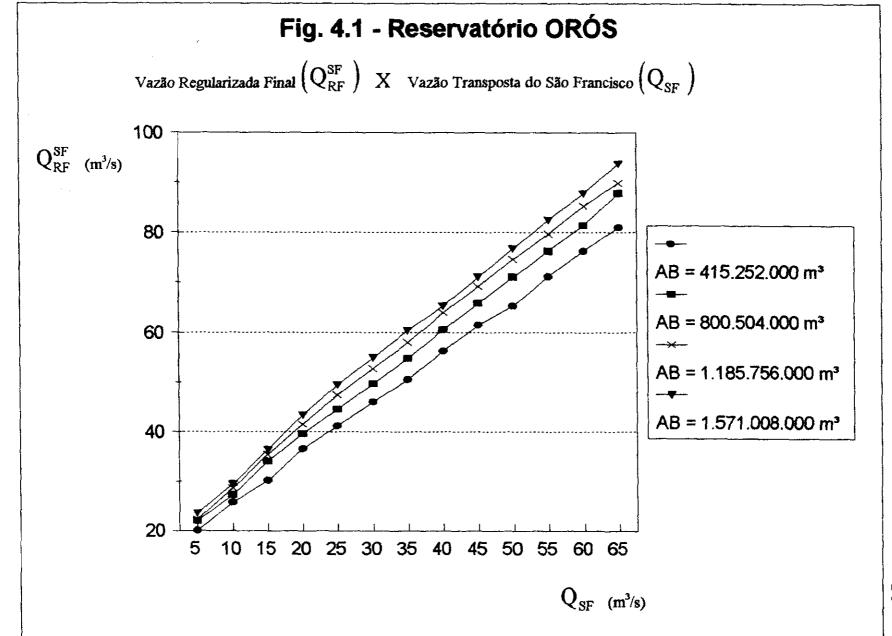
- a) Como era de se esperar, há uma relação direta entre os acréscimos de vazões regularizadas e de vazões transpostas. As figuras 4.1 a 4.4 mostram curvas monótonas crescentes para esta relação Q_{RF} x Q_{SF};
- b) Ao contrário do que a princípio possa se supor, os volumes vertidos pelos reservatórios nas simulações em que houve bombeamento são sempre inferiores aos volumes vertidos pelos mesmos reservatórios em simulações sem bombeamento, e, de um modo geral, os volumes vertidos diminuem com o aumento da vazão nominal de bombeamento para um mesmo alerta de bombeamento. As figuras 4.5, 4.6, 4.7, 4.8 apresentam gráficos que relacionam os volumes vertidos, convertidos em vazões continuas fictícias vs. as vazões nominais bombeadas pela Transposição nos respectivos reservatórios.

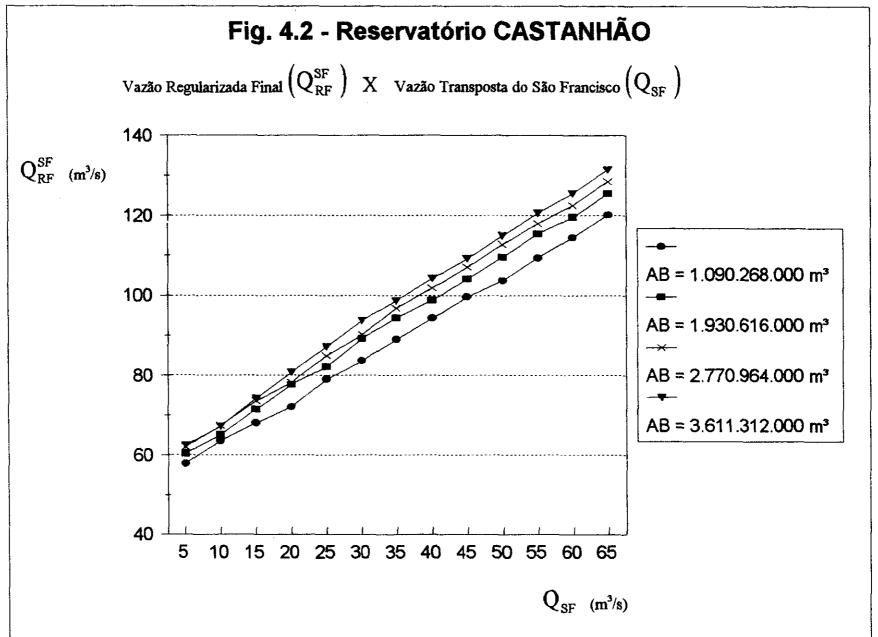
Vazão Regularizada (90% com volume de alerta) = 16,61 m3/s Afluências não controladas

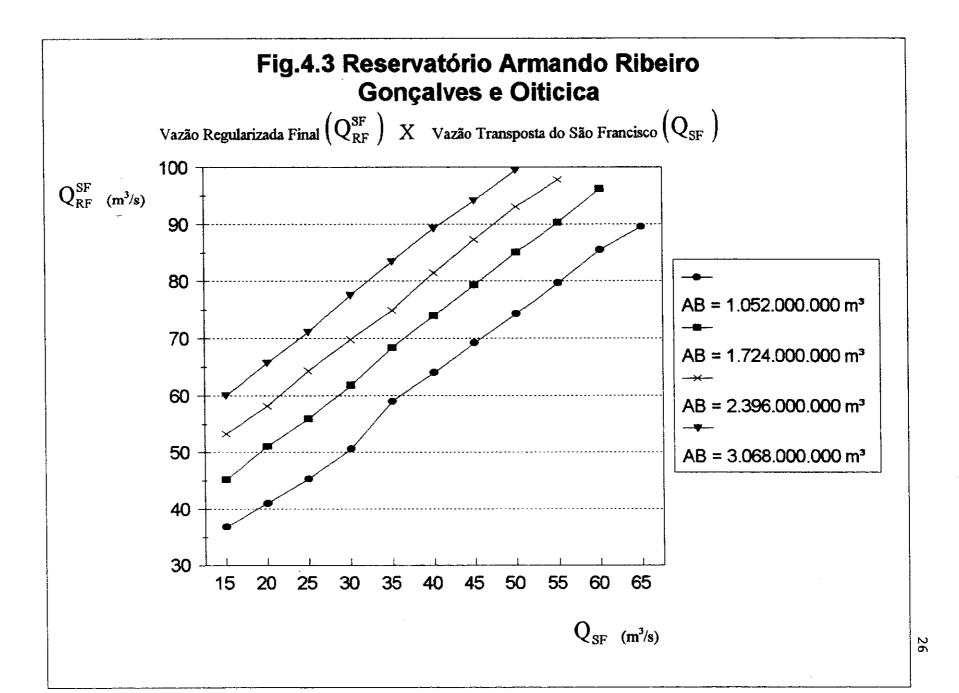
	não controladas							
Q_{RF}^{SF}			_			0		
	AB	Qsf	Qs	ТВ	RBCH	$Q_{SF,efe}$	RG	GA
(m³/s)	(m³)	(m³/s)	(m³/s)	(%)	(adim.)	(m³/s)	(adim.)	(m³/s)
20,007		5	283,74	5,19	13,08	0,26	1,19	3,14
25,771	415.252.000,00	10	240,21	16,55	5,54	1,65	1,41	7,51
30,204	415.252.000,00	15	214,47	23,19	3,91	3,48	1,50	10,12
36,556	415.252.000,00	20	184,10	32,37	3,08	6,47	1,58	13,47
41,149	415.252.000,00	25	168,69	36,72		9,18	1,60	15,36
46,042	415.252.000,00	30	156,60		2,34	12,57	1,58	16,86
50,488	415.252.000,00	35	148,31	45,77		16,02	1,55	17,86
56,229	415.252.000,00	40	138,68	50,97	1,94	20,39	1,52	19,23
61,440	415.252.000,00	45	131,66	54,83	1,82	24,67	1,49	20,16
65,327	415.252.000,00	50	127,16	55,92	1,74	27,96	1,47	20,76
71,222	415.252.000,00	55	120,69	59,66	1,66	32,81	1,44	21,80
76,267		60	117,51	62,20	1,60	37,32	1,41	22,34
	415.252.000,00	65	113,58	64,13		•		
81,001	415.252.000,00	03	113,30	04,13	1,54	41,68	1,39	22,71
04.000	000 504 000 00	اہ	074.05	- 40	20.50	0.00	4 00	
21,939	1	5	271,95	5,19	20,52	0,26	1,30	5,07
27,288		10	236,19	28,14	3,79	2,81	1,40	7,86
34,023	800.504.000,00	15	200,19	38,41	3,02	5,76	1,52	11,65
39,593	800.504.000,00	20	180,19	45,17	2,54	9,03	1,54	13,95
44,568	800.504.000,00	25	168,53	50,24	2,23	12,56	1,53	15,40
49,691	800.504.000,00	30	157,78	54,83	2,01	16,45	1,50	16,63
54,817	800.504.000,00	35	150,88	58,94	1,85	20,63	1,47	17,58
60,471	800.504.000,00	40	144,33	63,16	1,74	25,27	1,44	18,60
65,841	800.504.000,00	45	138,36	66,06	1,66	29,73	1,42	19,50
71,101	800.504.000,00	50	135,36	68,84	1,58	34,42	1,39	20,07
76,323	800.504.000,00	55	130,69	71,01	1,53	39,06	1,37	20,66
81,440		60	126,97	72,71	1,49	43,62	1,35	21,21
87,847	800.504.000,00	65	122,73	75,48	1,45	49,06	1,34	22,17
1,			,.	,	.,	,	, , ,	·
22,257	1.185.756.000,00	5	275,00	32,13	3,52	1,61	1,22	4,04
28,690	1.185.756.000,00	10	236,90	42,03	2,87	4,20	1,38	7,88
35,432	1.185.756.000,00	15	208,99	53,14	2,36	7,97	1,44	10,85
41,480	1.185.756.000,00	20	191,84	60,02	2,07	12,00	1,45	12,87
47,475		25	179,34	65,82		16,46	1,44	14,41
52,745		30	172,47	69,69		20,91	1,41	15,23
			165,20	72,22		25,28	1,38	16,09
57,979	•	35 40		·			1,38	17,45
63,959	1	40	155,85	74,76		29,90		
69,146	1	45	152,35	76,69		34,51	1,35	18,03
74,670		50	146,40	78,38	1,48	39,19	1,34	18,87
79,676		55	141,18	79,23	1,45	43,57	1,32	19,49
85,320		60	136,97	80,56	1,42	48,33	1,31	20,38
89,875	1.185.756.000,00	65	136,81	81,40	1,38	52,91	1,29	20,35
				-				
								ا مد مد
23,568	T		276,86	60,15		0,56		6,40
29,489			254,47		1,94	1,92		10,96
36,419		15	226,63	71,01	1,86	3,89	1,78	15,91
43,351		20	206,53	76,81	1,74	6,49	1,88	20,25
49,441	1	25	193,09	79,59	1,65	9,24	1,91	23,59
54,929		30	183,60	80,56	1,59	12,00	1,92	26,32
60,380			176,00	81,64	1,53	14,98	1,91	28,79
65,349	•		172,81	82,97	1,47	17,87		30,87
71,073	· ·		165,82	84,54	1,43	21,51	1,86	32,95
76,751		50	159,64	85,39	1,41	25,23	1,83	34,91
82,480	1		153,43	86,47	1,38			36,47
	4		153,43	87,32				38,42
87,796			147,26	88,41	1,34	1	1	39,79
93,700	1.571.000.000,00	60	147,20	00,41	1,34	37,30	',' -	55,79
	L			L	<u> </u>	<u> </u>	1	<u> </u>

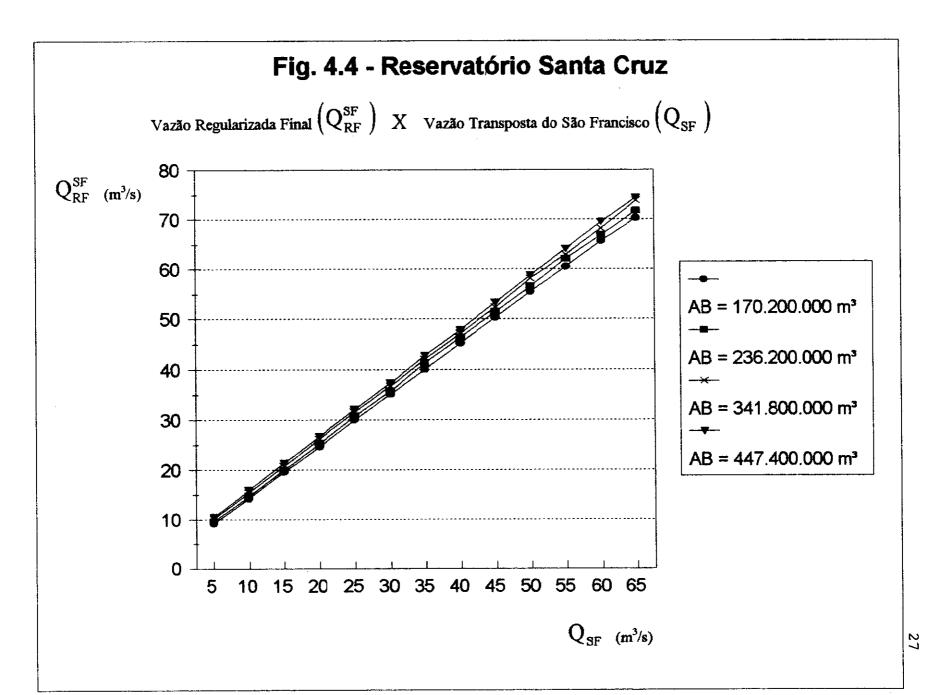
Vazão regularizada (90% com volume de alerta) = 56.72 m3/s
Afluências não controladas+vertimentos do Orós + série de vazões regularizadas pelo Reservatório
de Orós não consumidas no trecho (O - 9.0 m3/s)

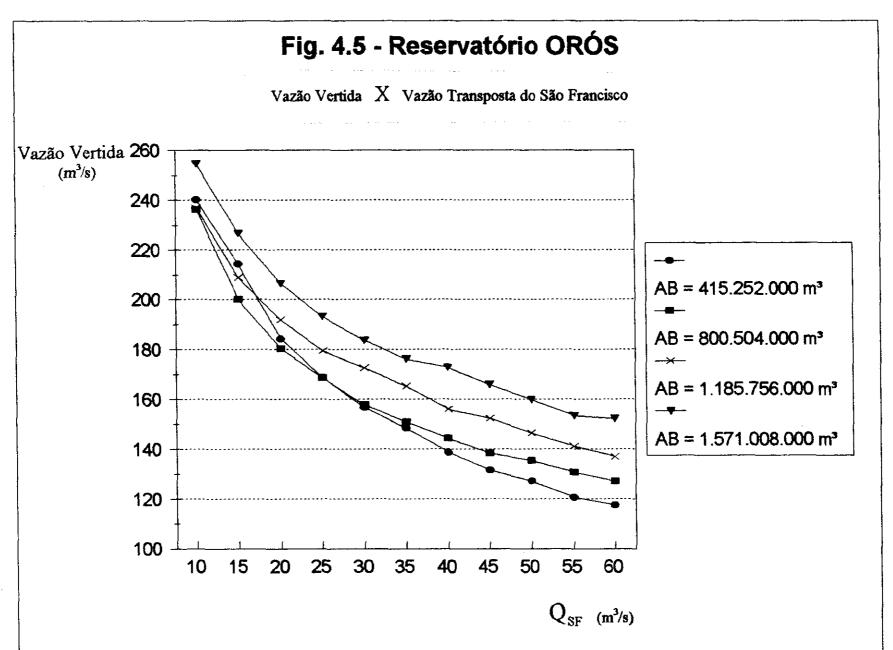
_	de Orós não consumidas no trecho (Q - 9,0 m3/s)								
١	Q_{RF}^{SF}	AB	Qsf	Qs	TB	RBCH	$Q_{\text{SF,efe}}$	RG	GA
L	(m³/s)	(m³)	(m³/s)	(m³/s)	(%)	(adim.)	(m³/s)	(adim.)	(m³/s)
J	57,797		5	317,55	7,167	3,01	0,36	1,01	0,72
1	63,545	1.090.268.000,00		282,25				1,08	
1	67,983	1.090.268.000,00	15	260,82		2,96	3,80	1,12	7,46
1	72,122		20	247,38		2,55	6,03	1,15	9,37
ł	79,029			225,18	39,667	2,25		1,19	12,39
1	83,653	1.090.268.000,00		215,11	43,167	2,08	12,95	1,20	13,98
-	88,98	1.090.268.000,00	35	204,97	47,500	1,94	16,63	1,21	15,64
į	94,31	1.090.268.000,00	40	197,29		1,82	20,60	1,22	16,99
1	99,605	1.090.268.000,00	45 50	190,32 187,60		1,74	24,60	1,22	18,28
	103,714 109,292	1.090.268.000,00 1.090.268.000,00	50 55	182,90		1,66	28,25 32,82	1,22	18,74 19,76
ı	114,356	1.090.268.000,00	60	179,77		1,60 1,55	37,20	1,22 1,22	20,44
ı	120,079	1.090.268.000,00	65	177,95		1,50	42,14	1,22	20,44
	120,079	1.090.268.000,00	65	177,90	94,833	1,50	42,14	1,41	21,22
	60,336	1.930.616.000,00	5	304,16	25,833	2,80	1,29	1,04	2,32
į	65,011	1.930.616.000,00				2,32	3,57	1,04	
	71,396	1.930.616.000,00	15	258,44			6,78	1,12	7,90
1	77,664	1.930.616.000,00	20	241,55		1,99	10,53	1,15	10,41
1	82,117	1.930.616.000,00	25	234,29		1,82	13,96	1,16	11,44
ı	89,227	1.930.616.000,00	30			1,75	18,60	1,18	13,91
١	94,342	1.930.616.000,00	35	216,05		1,65	22,75	1,19	14,87
1	98,693	1.930.616.000,00	40	212,31	66,667	1,57	26,67	1,18	15,31
1	104,118	1.930,616,000,00	45	207,67	68,833	1,53	30,97	1,19	16,42
1	109,452	1.930.616.000,00	50	203,92	71,500	1,48	35,75	1,18	16,98
ı	115,339		55	198,32		1,45	40,52	1,19	18,10
ı	119,537	1.930.616.000,00	60	197,27		1,40	44,80	1,18	
	125,38	1.930.616.000,00	65	190,86	76,000	1,39	49,40	1,18	19,26
t	24.242	0.770.004.000.00		204.70	£2.007	2.00	0.50	4.05	0.00
	61,948		5	301,72		2,06		1,05	
1	67,387	2.770.964.000,00	10			1,92	5,57	1,08	5,10
ı	73,564	2.770.964.000,00 2.770.964.000,00		261,74 254,42		1,83	9,23	1,12	7,62
	78,146		20	240,75		1,68	12,77 17,50	1,12 1,14	8,66 10,69
ĺ	84,912	2.770.964.000,00	25 30	236,25	70,000 72,667	1,61	21,80	1,15	11,58
ı	90,099 96,754					1,53 1,51	26,60	1,15	13,43
1	101,824		40			1,46		1,16	
	107,04	2.770.964.000,00	45		79,000	1,40	35,55	1,16	14,77
1	112,65	2.770.964.000,00	50	216,48	80,833	1,38	40,42	1,16	15,51
	117,868	2.770.964.000,00	55	212,35	82,000	1,36	45,10	1,16	16,05
	122,456	2.770.964.000,00	60	211,58	82,667	1,33	49,60	1,15	16,14
	128,441	2.770.964.000,00	65	207,57	84,000	1,31	54,60	1,15	17,12
-									
	62,402	3.611.312.000,00	5	303,44	66,667	1,70	3,33	1,04	2,35
1	67,161	3.611.312.000,00	10	293,75	70,167	1,49	7,02	1,05	3,42
	74,103	3.611.312.000,00	15	275,73	76,500	1,51	11,48	1,09	5,91
	80,715	3.611.312.000,00	20	261,79	80,000	1,50	16,00	1,11	8,00
1	87,18	3,611.312.000,00	25	249,51	82,833	1,47	20,71	1,13	9,75
1	93,724	3.611.312.000,00	30	239,62	85,667	1.44	25,70	1,14	11,30
1	98,636	3.611.312.000,00	35	237,36	86,500	1,38	30,28	1,13	11,64
	104,174	3,611.312.000,00	40	233,14	87,333	1,36	34,93	1,14	12,52
1	109,122	3,611.312.000,00	45	231,52	88,167	1,32		1,13	12,73
	114,841	3,611.312.000,00		228,29		1,30		1,13	13,54
	120,588	3.611.312.000,00		222,54		1,30		1,14	14,55
1	125,422		60	223,95		1,27	54,10	1,13	14,60
	131,405	3,611,312,000,00	65	218,82	90,833	1,26	59,04	1,14	15,64
L			L	L	<u></u>				

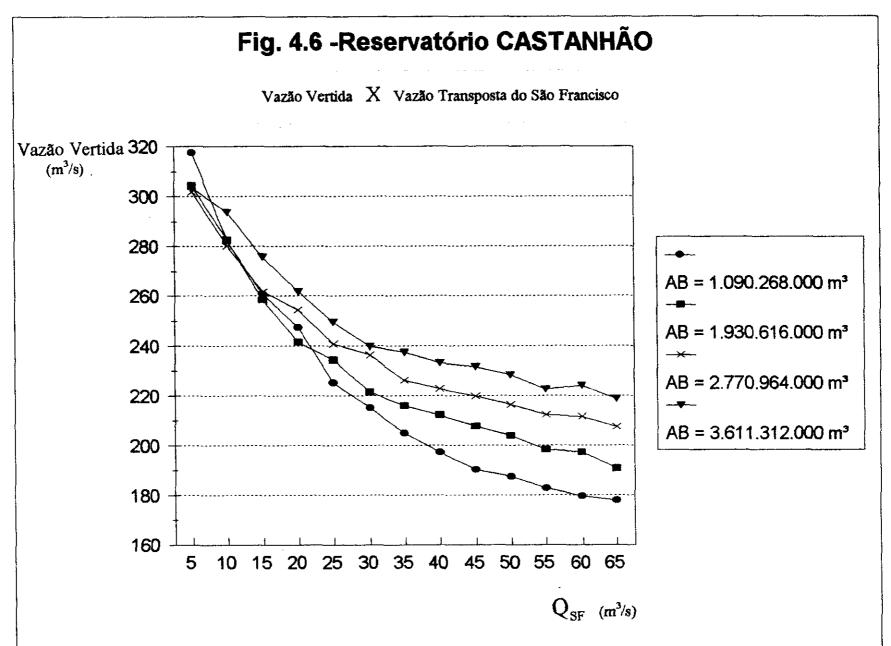

Tabela 4.3 - Reservatórios Armando Ribeiro Gonçalves e Oiticica

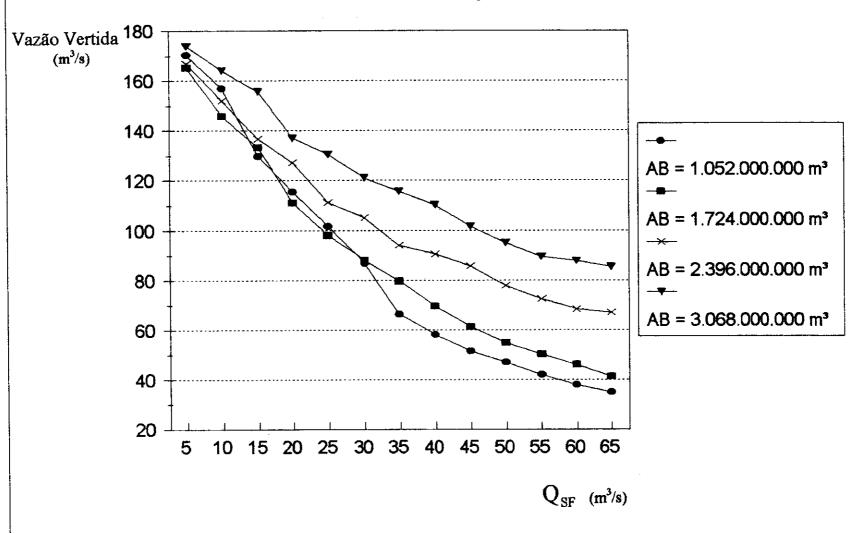

Vazão Regularizada (90% com volume de alerta) = 25,12 m3/s
Afluências não controladas + Vertimentos das bacias controladas + série de vazões regularizadas pelo
Reservatório de Curemas Mãe D'água + 1,0 m3/s remanescentes das barragens de montante da bacia


m*ys	Q SF RF	AB	Qsf	Qs	тв	RBCH	Q _{SF,efe}	RG	GA
27,98							(m³/s)		
30,716									
36,823 1.052 0.00 0.00									
40,967 1.052 000 000		1.052.000.000,00							
45,342	40,957	1.052.000.000,00	20						9,21
50,621 1,052,000,000,00 30 86,92 41,67 2,04 12,50 1,35 13,00 88,986 1,052,000,000,00 40 58,13 53,15 1,83 21,26 1,38 16,24 1,24 1,25 1,25 1,26 1,38 17,62 1,26 1,38 17,62 1,26 1,38 17,62 1,26 1,38 17,62 1,26 1,38 17,62 1,26 1,38 17,62 1,26 1,38 17,62 1,26 1,38 17,62 1,26 1,38 17,62 1,26 1,38 17,62 1,26 1,38 17,62 1,26 1,38 17,62 1,26 1,36 19,50 1,55 1,64 1,25 1,26 1,36 19,50 1,55 1,64 1,25 1,36 19,50 1,55 1,64 1,25 1,35 1,	45,342	1.052.000.000,00	25	101,69					
56,986 1,052,000,000,00 35 66,32 50,37 1,92 17,63 1,38 16,24 69,187 1,052,000,000,00 45 51,64 56,11 1,75 25,25 1,37 18,82 74,268 1,052,000,000,00 50 47,08 56,71 1,67 23,95 1,36 19,80 79,834 1,052,000,000,00 60 37,91 64,26 1,57 38,56 1,34 21,81 89,509 1,052,000,000,00 65 35,00 65,00 1,52 42,25 1,33 22,14 29,522 1,724,000,000,00 5 165,08 38,15 2,31 1,91 1,09 2,49 34,03 1,724,000,000,00 10 145,92 41,67 2,14 4,17 1,16 4,14 45,214 1,724,000,000,00 20 111,07 52,78 1,90 10,58 1,29 6,83 1,20 6,26 55,883 1,724,000,000,00 25 98,04 59,22	50,621	1.052.000.000,00		86,92	41,67				13,00
69,187	58,986	1.052.000.000,00		66,32	50,37	1,92	17,63		16,24
74,268					53,15	1,83	21,26	1,38	17,62
78,634							25,25	1,37	18,82
85,482 1.052.000.000,00 60 37,91 64,26 1,57 38,56 1,34 21,81 29,522 1.724.000.000,00 5 165,08 38,15 2,31 1,91 1,09 2,49 34,03 1.724.000.000,00 10 145,92 41,67 2,14 4,17 1,16 4,74 38,212 1.724.000.000,00 15 133,20 45,56 1,92 6,83 1,20 6,26 51,019 1.724.000.000,00 20 111,07 52,78 1,90 10,56 1,27 9,54 55,883 1.724.000.000,00 30 88,04 59,82 1,71 17,94 1,30 12,26 68,33 1,724.000.000,00 40 69,58 67,96 1,59 27,19 1,31 16,03 16,38 1,34 12,24 1,30 12,24 1,30 12,24 1,30 12,24 1,30 12,28 1,33 12,21 1,42 1,53 1,53 1,53 1,42 1,41 1,53									19,80
89,508 1.052,000,000,00 65 35,00 65,00 1,52 42,25 1,33 22,14 29,522 1.724,000,000,00 5 165,08 38,15 2,31 1,91 1,09 2,49 34,03 1.724,000,000,00 15 133,20 45,56 1,92 6,83 1,20 8,26 6,26 45,214 1,724,000,000,00 20 111,07 52,78 1,90 10,56 1,27 9,54 51,019 1,724,000,000,00 25 98,04 57,22 1,81 14,31 1,29 11,59 11,59 11,59 11,59 11,59 11,59 11,59 11,59 11,59 11,59 11,59 11,59 11,59 11,59 27,9 9,54 6,722 1,81 14,31 1,29 11,59 11,59 11,59 11,59 1,71 17,94 1,30 12,26 6,33 1,71 1,79 1,30 12,24 1,30 14,22 1,31 16,03 7,37 1,41 1,31 16,03									20,60
29,522 1,724,000,000,00 10 145,92 41,67 2,14 4,17 1,16 4,74 38,212 1,724,000,000,00 15 133,20 45,56 1,92 6,83 1,20 6,26 45,61 1,91 1,724,000,000,00 20 111,07 52,78 1,90 10,56 1,27 9,54 61,019 1,724,000,000,00 25 98,04 57,22 1,81 14,31 1,29 11,59 55,883 1,724,000,000,00 30 88,04 59,82 1,71 179,44 1,30 12,82 68,337 1,724,000,000,00 35 79,64 64,07 1,64 22,43 1,30 14,25 68,337 1,724,000,000,00 45 61,31 69,82 1,55 31,42 1,31 17,34 16,03 73,879 1,724,000,000,00 45 61,31 69,82 1,55 31,42 1,31 17,34 85,035 1,724,000,000,00 50 54,92 71,67 1,51 35,83 1,30 18,35 85,035 1,724,000,000,00 55 50,32 73,70 1,48 40,54 1,30 18,35 85,035 1,724,000,000,00 65 46,12 75,19 1,45 45,11 1,29 20,00 96,152 1,724,000,000,00 65 41,27 76,48 1,43 49,71 1,28 21,32 30,346 2,396,000,000,00 55 166,79 56,48 1,85 45,11 2,29 20,00 35,102 2,396,000,000,00 55 166,79 56,48 1,85 2,82 1,90 2,00 35,102 2,396,000,000,00 15 136,76 63,52 1,64 9,53 1,17 2,24 0,000,00 50 54,12 77 6,48 1,43 49,71 1,28 21,32 30,345 2,396,000,000,00 55 166,79 56,48 1,85 2,82 1,99 2,40 40,705 2,396,000,000,00 55 166,79 56,48 1,85 2,82 1,99 2,40 40,705 2,396,000,000,00 55 166,79 56,48 1,85 2,82 1,99 2,40 40,705 2,396,000,000,00 15 136,76 63,52 1,64 9,53 1,17 6,06 43,70 2,396,000,000,00 25 111,14 72,59 1,55 18,15 1,23 9,99 18,13 2,396,000,000,00 45 85,71 79,26 1,39 35,67 1,23 19,72 54,867 2,396,000,000,00 45 85,71 79,26 1,39 35,67 1,23 19,73 4,867 2,396,000,000,00 55 72,63 82,96 1,36 45,63 1,23 15,47 83,30 1,23 14,08 81,424 2,396,000,000,00 55 72,63 82,96 1,36 45,63 1,23 15,47 83,30 83,000,000,00 10 164,06 79,26 1,39 35,67 1,23 11,66 54 43,39 30,68,000,000,00 15 155,65 81,11 1,32 12,17 1,10 3,91 33,30 63 3,088,000,000,00 10 164,06 79,26 1,39 35,67 1,23 11,66 54 54,33 3,088,000,000,00 15 155,65 81,11 1,32 12,17 1,10 3,91 35,66 1,18 33,66 30,68,000,000,00 15 155,65 81,11 1,32 12,17 1,10 3,91 35,66 30,60 30,60 00,00 00 55 130,51 85,19 1,36 21,30 11,67 5,96 1,18 10,10 17,007 3,068,000,000,00 55 89,68 90,00 1,29 49,50 1,19 4,50 90,01 1,19 14,45 89,00 1,19 14,45									21,81
38,03	89,508	1.052.000.000,00	65	35,00	65,00	1,52	42,25	1,33	22,14
38,03	00 500	4 704 000 000 00							
38,212 1,724,000,000,00 15 133,20 45,56 1,92 6,83 1,20 6,26 45,214 1,724,000,000,00 25 198,04 57,22 1,90 10,56 1,27 9,54 51,019 1,724,000,000,00 30 88,04 59,82 1,71 17,94 1,30 12,82 61,797 1,724,000,000,00 40 69,58 67,96 1,59 27,19 1,31 16,03 73,879 1,724,000,000,00 45 61,31 69,82 1,55 31,42 1,31 16,03 79,305 1,724,000,000,00 55 54,92 71,67 1,51 35,83 1,30 18,35 85,035 1,724,000,000,00 60 46,12 75,19 1,41 1,29 20,08 96,152 1,244,000,000,00 65 41,27 76,48 1,43 49,71 1,28 21,32 30,345 2,396,000,000,00 5 166,79 56,48 1,85 2,82 1,09									
45,214 1,724,000,000,00 20 111,07 52,78 1,90 10,56 1,27 9,54 51,019 1,724,000,000,00 25 98,04 57,22 1,81 14,31 1,29 11,59 55,883 1,724,000,000,00 35 79,64 64,07 1,64 22,43 1,30 14,25 68,337 1,724,000,000,00 40 69,58 67,96 1,59 27,19 1,31 16,03 73,879 1,724,000,000,00 45 61,31 69,82 1,55 31,42 1,31 17,34 79,305 1,724,000,000,00 55 50,32 73,70 1,48 40,54 1,30 18,35 85,035 1,724,000,000,00 60 46,12 75,19 1,45 45,11 1,29 20,08 96,152 1,724,000,000,00 65 41,27 76,48 1,43 49,71 1,28 21,32 30,345 2,396,000,000,00 5 166,79 56,48 1,65 1,96									
51,019 1,724,000,000,00 25 98,04 57,22 1,81 1,431 1,29 11,59 55,883 1,724,000,000,00 30 88,04 59,82 1,71 17,94 1,30 12,82 68,337 1,724,000,000,00 40 69,58 67,96 1,59 27,19 1,31 16,03 73,879 1,724,000,000,00 50 54,92 71,67 1,51 35,83 1,30 18,36 85,035 1,724,000,000,00 55 50,32 73,70 1,48 40,54 1,30 19,38 90,313 1,724,000,000,00 60 46,12 75,19 1,45 45,11 1,29 20,08 96,152 1,724,000,000,00 65 41,27 76,48 1,43 49,71 1,28 21,32 30,345 2,396,000,000,00 5 166,79 56,48 1,85 2,82 1,09 2,40 45,707 2,396,000,000,00 15 136,76 63,52 1,64 9,53									
55,883 1,724,000,000,00 30 88,04 59,82 1,71 17,94 1,30 12,82 61,797 1,724,000,000,00 35 79,64 64,07 1,64 22,43 1,30 14,25 68,337 1,724,000,000,00 40 69,58 67,96 1,59 27,19 1,31 16,33 73,879 1,724,000,000,00 50 54,92 71,67 1,51 35,83 1,30 18,35 85,035 1,724,000,000,00 65 50,32 73,70 1,48 40,54 1,30 18,35 90,313 1,724,000,000,00 65 41,27 76,48 1,43 49,71 1,28 21,32 30,345 2,396,000,000,00 5 166,79 56,48 1,85 2,82 1,09 2,40 35,102 2,396,000,000,00 15 136,76 63,52 1,64 9,53 1,17 6,06 45,707 2,396,000,000,00 25 111,14 72,59 1,55 18,15		, ,							
61,797									
68,337 1,724,000,000,00 40 69,58 67,96 1,59 27,19 1,31 18,03 73,879 1,724,000,000,00 45 61,31 69,82 1,55 31,42 1,31 17,34 85,035 1,724,000,000,00 50 54,92 71,67 1,51 35,83 1,30 18,35 85,035 1,724,000,000,00 60 46,12 75,19 1,45 45,11 1,29 20,08 96,152 1,724,000,000,00 65 41,27 76,48 1,43 49,71 1,28 21,32 30,345 2,396,000,000,00 5 166,79 56,48 1,85 2,82 1,09 2,40 40,705 2,396,000,000,00 15 136,76 63,52 1,64 9,53 1,17 6,06 45,707 2,396,000,000,00 20 127,11 66,67 1,54 13,33 1,19 7,25 53,261 2,396,000,000,00 30 105,00 74,26 1,48 22,28									
73,879 1.724.000.000,00 45 61,31 69,82 1,55 31,42 1,31 17,34 79,305 1.724.000.000,00 50 54,92 71,67 1,51 35,83 1,30 18,35 85,035 1.724.000.000,00 60 46,12 75,19 1,45 45,11 1,29 20,08 96,152 1.724.000.000,00 65 41,27 76,48 1,43 49,71 1,28 21,32 30,345 2.396.000.000,00 10 152,09 59,63 1,67 5,96 1,13 4,02 45,707 2.396.000.000,00 15 136,76 63,52 1,64 9,53 1,17 6,06 45,707 2.396.000.000,00 20 127,11 66,67 1,54 13,33 1,19 7,25 53,261 2.396.000.000,00 25 111,14 72,59 1,55 18,15 1,23 9,99 58,132 2.396.000.000,00 35 94,11 76,11 1,47 26,64		•					, , , , , , , , , , , , , , , , , , ,		
79,306 1.724.000.000,00 50 54,92 71,67 1,51 35,83 1,30 18,36 85,035 1.724.000.000,00 60 46,12 75,19 1,48 40,54 1,30 19,38 90,313 1.724.000.000,00 60 46,12 75,19 1,45 45,11 1,29 20,08 96,152 1.724.000.000,00 65 41,27 76,48 1,43 49,71 1,28 21,32 30,345 2.396.000.000,00 5 166,79 56,48 1,85 2,82 1,09 2,40 35,102 2.396.000.000,00 15 136,76 63,52 1,64 9,53 1,17 6,06 45,707 2.396.000.000,00 20 127,11 66,67 1,54 13,33 1,19 7,25 53,261 2.396.000.000,00 25 111,14 72,59 1,55 18,15 1,23 9,99 58,132 2.396.000.000,00 30 105,00 74,26 1,48 22,28		= -							
85,035 1.724.000.000,00 55 50,32 73,70 1,48 40,54 1,30 19,38 90,313 1.724.000.000,00 60 46,12 75,19 1,45 45,11 1,29 20,08 96,152 1.724.000.000,00 65 41,27 76,48 1,43 49,71 1,28 21,32 30,345 2.396.000.000,00 5 166,79 56,48 1,85 2,82 1,09 2,40 35,102 2.396.000.000,00 15 136,76 63,52 1,64 9,53 1,17 6,06 45,707 2.396.000.000,00 20 127,11 66,67 1,54 13,33 1,19 7,25 53,261 2.396.000.000,00 25 111,14 72,59 1,55 18,15 1,23 9,99 58,132 2.396.000.000,00 35 94,11 76,11 1,47 26,64 1,24 12,53 69,744 2.396.000.000,00 45 85,71 79,26 1,39 35,67									
90,313		-							
96,152 1.724.000.000,00 65 41,27 76,48 1,43 49,71 1,28 21,32 30,345 2.396.000.000,00 5 166,79 56,48 1,85 2,82 1,09 2,40 35,102 2.396.000.000,00 10 152,09 59,63 1,67 5,96 1,13 4,02 40,705 2.396.000.000,00 20 127,11 66,67 1,54 13,33 1,19 7,25 53,261 2.396.000.000,00 25 111,14 72,59 1,55 18,15 1,23 9,99 58,132 2.396.000.000,00 30 105,00 74,26 1,48 22,28 1,23 10,73 64,284 2.396.000.000,00 35 94,11 76,11 1,47 26,64 1,24 12,53 69,744 2.396.000.000,00 45 85,71 79,26 1,39 35,67 1,23 14,08 81,424 2.396.000.000,00 50 77,92 81,67 1,38 40,83		•							
30,345									
35,102 2.396.000.000,00 10 152,09 59,63 1,67 5,96 1,13 4,02 40,705 2.396.000.000,00 15 136,76 63,52 1,64 9,53 1,17 6,06 45,707 2.396.000.000,00 20 127,11 66,67 1,55 18,15 1,23 9,99 58,132 2.396.000.000,00 30 105,00 74,26 1,48 22,28 1,23 10,73 64,284 2.396.000.000,00 35 94,11 76,11 1,47 26,64 1,24 12,53 69,744 2.396.000.000,00 40 90,47 78,52 1,42 31,41 1,23 13,22 74,867 2.396.000.000,00 45 85,71 79,26 1,38 40,83 1,23 14,08 81,424 2.396.000.000,00 50 77,92 81,67 1,38 40,83 1,23 16,56 93,055 2.396.000.000,00 60 68,46 83,89 1,35 50,33	30,132	1.724.000.000,00	00	71,21	70,40	1,43	79,71	1,20	21,02
35,102 2.396.000.000,00 10 152,09 59,63 1,67 5,96 1,13 4,02 40,705 2.396.000.000,00 15 136,76 63,52 1,64 9,53 1,17 6,06 45,707 2.396.000.000,00 20 127,11 66,67 1,54 13,33 1,19 7,25 53,261 2.396.000.000,00 30 105,00 74,26 1,48 22,28 1,23 9,99 58,132 2.396.000.000,00 35 94,11 76,11 1,47 26,64 1,24 12,53 69,744 2.396.000.000,00 40 90,47 78,52 1,42 31,41 1,23 13,22 74,867 2.396.000.000,00 45 85,71 79,26 1,38 40,83 1,23 16,56 93,055 2.396.000.000,00 50 77,92 81,67 1,38 40,83 1,23 16,56 93,055 2.396.000.000,00 50 68,46 83,89 1,35 50,33	30,345	2.396.000.000,00	- 5	166,79	56,48	1,85	2,82	1,09	2,40
40,705 2.396.000.000,00 15 136,76 63,52 1,64 9,53 1,17 6,06 45,707 2.396.000.000,00 20 127,11 66,67 1,54 13,33 1,19 7,25 53,261 2.396.000.000,00 30 105,00 74,26 1,48 22,28 1,23 10,73 64,284 2.396.000.000,00 35 94,11 76,11 1,47 26,64 1,24 12,53 69,744 2.396.000.000,00 40 90,47 78,52 1,42 31,41 1,23 13,22 74,867 2.396.000.000,00 45 85,71 79,26 1,39 35,67 1,23 14,08 81,424 2.396.000.000,00 50 77,92 81,67 1,38 40,83 1,23 15,47 87,306 2.396.000.000,00 55 72,63 82,96 1,36 45,63 1,23 17,65 30,601 3.068.000.000,00 65 67,06 84,63 1,32 55,01		•							
45,707 2.396.000.000,00 20 127,11 66,67 1,54 13,33 1,19 7,25 53,261 2.396.000.000,00 25 111,14 72,59 1,55 18,15 1,23 9,99 58,132 2.396.000.000,00 30 105,00 74,26 1,48 22,28 1,23 10,73 69,744 2.396.000.000,00 40 90,47 78,52 1,42 31,41 1,23 13,22 74,867 2.396.000.000,00 45 85,71 79,26 1,39 35,67 1,23 14,08 81,424 2.396.000.000,00 50 77,92 81,67 1,38 40,83 1,23 15,47 87,306 2.396.000.000,00 55 72,63 82,96 1,36 45,63 1,23 16,56 93,055 2.396.000.000,00 65 67,06 84,63 1,32 55,01 1,22 17,65 30,601 3.068.000.000,00 5 173,91 77,04 1,42 3,85	40,705	2.396.000.000,00	15	136,76					
53,261 2.396.000.000,00 25 111,14 72,59 1,55 18,15 1,23 9,99 58,132 2.396.000.000,00 30 105,00 74,26 1,48 22,28 1,23 10,73 64,284 2.396.000.000,00 35 94,11 76,11 1,47 26,64 1,24 12,53 69,744 2.396.000.000,00 40 90,47 78,52 1,42 31,41 1,23 13,22 74,867 2.396.000.000,00 45 85,71 79,26 1,39 35,67 1,23 14,08 81,424 2.396.000.000,00 50 77,92 81,67 1,38 40,83 1,23 15,47 87,306 2.396.000.000,00 60 68,46 83,89 1,35 50,33 1,23 16,56 93,055 2.396.000.000,00 65 67,06 84,63 1,32 55,01 1,22 17,65 30,601 3.068.000.000,00 5 173,91 77,04 1,42 3,85	45,707	2.396.000.000,00	20	127,11					
64,284 2.396.000.000,00 35 94,11 76,11 1,47 26,64 1,24 12,53 69,744 2.396.000.000,00 40 90,47 78,52 1,42 31,41 1,23 13,22 74,867 2.396.000.000,00 50 77,92 81,67 1,38 40,83 1,23 15,47 87,306 2.396.000.000,00 55 72,63 82,96 1,36 45,63 1,23 15,47 87,306 2.396.000.000,00 60 68,46 83,89 1,35 50,33 1,23 17,60 97,784 2.396.000.000,00 65 67,06 84,63 1,32 55,01 1,22 17,65 30,601 3.068.000.000,00 5 173,91 77,04 1,42 3,85 1,06 1,63 35,865 3.068.000.000,00 10 164,06 79,26 1,36 7,93 1,09 2,82 41,195 3.068.000.000,00 15 155,65 81,11 1,32 12,17	53,261	2.396.000.000,00	25	111,14	72,59	1,55	18,15	1,23	9,99
69,744 2.396.000.000,00 40 90,47 78,52 1,42 31,41 1,23 13,22 74,867 2.396.000.000,00 45 85,71 79,26 1,39 35,67 1,23 14,08 81,424 2.396.000.000,00 50 77,92 81,67 1,38 40,83 1,23 15,47 87,306 2.396.000.000,00 55 72,63 82,96 1,36 45,63 1,23 16,56 93,055 2.396.000.000,00 60 68,46 83,89 1,35 50,33 1,23 17,60 97,784 2.396.000.000,00 65 67,06 84,63 1,32 55,01 1,22 17,65 30,601 3.068.000.000,00 5 173,91 77,04 1,42 3,85 1,06 1,63 35,865 3.068.000.000,00 15 155,65 81,11 1,32 12,17 1,10 3,91 48,398 3.068.000.000,00 20 137,09 83,70 1,39 16,74	58,132			105,00	74,26	1,48	22,28	1,23	10,73
74,867 2.396.000.000,00 45 85,71 79,26 1,39 35,67 1,23 14,08 81,424 2.396.000.000,00 50 77,92 81,67 1,38 40,83 1,23 15,47 87,306 2.396.000.000,00 55 72,63 82,96 1,36 45,63 1,23 16,56 93,055 2.396.000.000,00 60 68,46 83,89 1,35 50,33 1,23 17,60 97,784 2.396.000.000,00 65 67,06 84,63 1,32 55,01 1,22 17,65 30,601 3.068.000.000,00 5 173,91 77,04 1,42 3,85 1,06 1,63 35,865 3.068.000.000,00 10 164,06 79,26 1,36 7,93 1,09 2,82 41,195 3.068.000.000,00 15 155,65 81,11 1,32 12,17 1,10 3,91 48,398 3.068.000.000,00 20 137,09 83,70 1,39 16,74							26,64		
81,424 2.396.000.000,00 50 77,92 81,67 1,38 40,83 1,23 15,47 87,306 2.396.000.000,00 55 72,63 82,96 1,36 45,63 1,23 16,56 93,055 2.396.000.000,00 60 68,46 83,89 1,35 50,33 1,23 17,60 97,784 2.396.000.000,00 65 67,06 84,63 1,32 55,01 1,22 17,65 30,601 3.068.000.000,00 5 173,91 77,04 1,42 3,85 1,06 1,63 35,865 3.068.000.000,00 10 164,06 79,26 1,36 7,93 1,09 2,82 41,195 3.068.000.000,00 15 155,65 81,11 1,32 12,17 1,10 3,91 48,398 3.068.000.000,00 20 137,09 83,70 1,39 16,74 1,16 6,54 59,964 3.068.000.000,00 25 130,51 85,19 1,36 21,30 1,16 7,62 59,964 3.068.000.000,00 35 115,73	69,744								13,22
87,306 2.396.000.000,00 55 72,63 82,96 1,36 45,63 1,23 16,56 93,055 2.396.000.000,00 60 68,46 83,89 1,35 50,33 1,23 17,60 97,784 2.396.000.000,00 65 67,06 84,63 1,32 55,01 1,22 17,65 30,601 3.068.000.000,00 5 173,91 77,04 1,42 3,85 1,06 1,63 35,865 3.068.000.000,00 10 164,06 79,26 1,36 7,93 1,09 2,82 41,195 3.068.000.000,00 15 155,65 81,11 1,32 12,17 1,10 3,91 48,398 3.068.000.000,00 20 137,09 83,70 1,39 16,74 1,16 6,54 54,033 3.068.000.000,00 25 130,51 85,19 1,36 21,30 1,16 7,62 59,964 3.068.000.000,00 35 115,73 87,04 1,33 30,46		-							
93,055 2.396.000.000,00 60 68,46 83,89 1,35 50,33 1,23 17,60 97,784 2.396.000.000,00 65 67,06 84,63 1,32 55,01 1,22 17,65 30,601 3.068.000.000,00 5 173,91 77,04 1,42 3,85 1,06 1,63 35,865 3.068.000.000,00 10 164,06 79,26 1,36 7,93 1,09 2,82 41,195 3.068.000.000,00 15 155,65 81,11 1,32 12,17 1,10 3,91 48,398 3.068.000.000,00 20 137,09 83,70 1,39 16,74 1,16 6,54 54,033 3.068.000.000,00 25 130,51 85,19 1,36 21,30 1,16 7,62 59,964 3.068.000.000,00 30 121,06 85,93 1,35 25,78 1,18 9,07 65,681 3.068.000.000,00 35 115,73 87,04 1,33 30,46									
97,784 2.396.000.000,00 65 67,06 84,63 1,32 55,01 1,22 17,65 30,601 3.068.000.000,00 5 173,91 77,04 1,42 3,85 1,06 1,63 35,865 3.068.000.000,00 10 164,06 79,26 1,36 7,93 1,09 2,82 41,195 3.068.000.000,00 15 155,65 81,11 1,32 12,17 1,10 3,91 48,398 3.068.000.000,00 20 137,09 83,70 1,39 16,74 1,16 6,54 54,033 3.068.000.000,00 25 130,51 85,19 1,36 21,30 1,16 7,62 59,964 3.068.000.000,00 30 121,06 85,93 1,35 25,78 1,18 9,07 65,681 3.068.000.000,00 35 115,73 87,04 1,33 30,46 1,18 10,10 77,501 3.068.000.000,00 45 101,63 88,89 1,31 40,00		· •							
30,601 3.068.000.000,00 5 173,91 77,04 1,42 3,85 1,06 1,63 35,865 3.068.000.000,00 10 164,06 79,26 1,36 7,93 1,09 2,82 41,195 3.068.000.000,00 15 155,65 81,11 1,32 12,17 1,10 3,91 48,398 3.068.000.000,00 20 137,09 83,70 1,39 16,74 1,16 6,54 54,033 3.068.000.000,00 25 130,51 85,19 1,36 21,30 1,16 7,62 59,964 3.068.000.000,00 30 121,06 85,93 1,35 25,78 1,18 9,07 65,681 3.068.000.000,00 35 115,73 87,04 1,33 30,46 1,18 10,10 71,007 3.068.000.000,00 40 110,22 87,59 1,31 35,04 1,18 10,85 77,501 3.068.000.000,00 45 101,63 88,89 1,31 40,00									
35,865 3.068.000.000,00 10 164,06 79,26 1,36 7,93 1,09 2,82 41,195 3.068.000.000,00 15 155,65 81,11 1,32 12,17 1,10 3,91 48,398 3.068.000.000,00 20 137,09 83,70 1,39 16,74 1,16 6,54 54,033 3.068.000.000,00 25 130,51 85,19 1,36 21,30 1,16 7,62 59,964 3.068.000.000,00 30 121,06 85,93 1,35 25,78 1,18 9,07 65,681 3.068.000.000,00 35 115,73 87,04 1,33 30,46 1,18 10,10 71,007 3.068.000.000,00 40 110,22 87,59 1,31 35,04 1,18 10,85 77,501 3.068.000.000,00 45 101,63 88,89 1,31 40,00 1,19 12,38 83,396 3.068.000.000,00 50 95,14 89,26 1,31 44,63	97,784	2.396.000.000,00	65	67,06	84,63	1,32	55,01	1,22	17,65
35,865 3.068.000.000,00 10 164,06 79,26 1,36 7,93 1,09 2,82 41,195 3.068.000.000,00 15 155,65 81,11 1,32 12,17 1,10 3,91 48,398 3.068.000.000,00 20 137,09 83,70 1,39 16,74 1,16 6,54 54,033 3.068.000.000,00 25 130,51 85,19 1,36 21,30 1,16 7,62 59,964 3.068.000.000,00 30 121,06 85,93 1,35 25,78 1,18 9,07 65,681 3.068.000.000,00 35 115,73 87,04 1,33 30,46 1,18 10,10 71,007 3.068.000.000,00 40 110,22 87,59 1,31 35,04 1,18 10,85 77,501 3.068.000.000,00 45 101,63 88,89 1,31 40,00 1,19 12,38 83,396 3.068.000.000,00 50 95,14 89,26 1,31 44,63	30.004	3 068 000 000 00	<u> </u>	172 04	77.04	1 40	2 05	1 00	1 62
41,195 3.068.000.000,00 15 155,65 81,11 1,32 12,17 1,10 3,91 48,398 3.068.000.000,00 20 137,09 83,70 1,39 16,74 1,16 6,54 54,033 3.068.000.000,00 25 130,51 85,19 1,36 21,30 1,16 7,62 59,964 3.068.000.000,00 30 121,06 85,93 1,35 25,78 1,18 9,07 65,681 3.068.000.000,00 35 115,73 87,04 1,33 30,46 1,18 10,10 71,007 3.068.000.000,00 40 110,22 87,59 1,31 35,04 1,18 10,85 77,501 3.068.000.000,00 45 101,63 88,89 1,31 40,00 1,19 12,38 83,396 3.068.000.000,00 50 95,14 89,26 1,31 44,63 1,20 13,65 89,204 3.068.000.000,00 55 89,68 90,00 1,29 49,50									
48,398 3.068.000.000,00 20 137,09 83,70 1,39 16,74 1,16 6,54 54,033 3.068.000.000,00 25 130,51 85,19 1,36 21,30 1,16 7,62 59,964 3.068.000.000,00 30 121,06 85,93 1,35 25,78 1,18 9,07 65,681 3.068.000.000,00 35 115,73 87,04 1,33 30,46 1,18 10,10 71,007 3.068.000.000,00 40 110,22 87,59 1,31 35,04 1,18 10,85 77,501 3.068.000.000,00 45 101,63 88,89 1,31 40,00 1,19 12,38 83,396 3.068.000.000,00 50 95,14 89,26 1,31 44,63 1,20 13,65 89,204 3.068.000.000,00 55 89,68 90,00 1,29 49,50 1,20 14,58 94,07 3.068.000.000,00 60 87,90 90,37 1,27 54,22 1,19 14,73									
54,033 3.068.000.000,00 25 130,51 85,19 1,36 21,30 1,16 7,62 59,964 3.068.000.000,00 30 121,06 85,93 1,35 25,78 1,18 9,07 65,681 3.068.000.000,00 35 115,73 87,04 1,33 30,46 1,18 10,10 71,007 3.068.000.000,00 40 110,22 87,59 1,31 35,04 1,18 10,85 77,501 3.068.000.000,00 45 101,63 88,89 1,31 40,00 1,19 12,38 83,396 3.068.000.000,00 50 95,14 89,26 1,31 44,63 1,20 13,65 89,204 3.068.000.000,00 55 89,68 90,00 1,29 49,50 1,20 14,58 94,07 3.068.000.000,00 60 87,90 90,37 1,27 54,22 1,19 14,73		•							
59,964 3.068.000.000,00 30 121,06 85,93 1,35 25,78 1,18 9,07 65,681 3.068.000.000,00 35 115,73 87,04 1,33 30,46 1,18 10,10 71,007 3.068.000.000,00 40 110,22 87,59 1,31 35,04 1,18 10,85 77,501 3.068.000.000,00 45 101,63 88,89 1,31 40,00 1,19 12,38 83,396 3.068.000.000,00 50 95,14 89,26 1,31 44,63 1,20 13,65 89,204 3.068.000.000,00 55 89,68 90,00 1,29 49,50 1,20 14,58 94,07 3.068.000.000,00 60 87,90 90,37 1,27 54,22 1,19 14,73									
65,681 3.068.000.000,00 35 115,73 87,04 1,33 30,46 1,18 10,10 71,007 3.068.000.000,00 40 110,22 87,59 1,31 35,04 1,18 10,85 77,501 3.068.000.000,00 45 101,63 88,89 1,31 40,00 1,19 12,38 83,396 3.068.000.000,00 50 95,14 89,26 1,31 44,63 1,20 13,65 89,204 3.068.000.000,00 55 89,68 90,00 1,29 49,50 1,20 14,58 94,07 3.068.000.000,00 60 87,90 90,37 1,27 54,22 1,19 14,73									
71,007 3,068,000,000,00 40 110,22 87,59 1,31 35,04 1,18 10,85 77,501 3,068,000,000,00 45 101,63 88,89 1,31 40,00 1,19 12,38 83,396 3,068,000,000,00 50 95,14 89,26 1,31 44,63 1,20 13,65 89,204 3,068,000,000,00 55 89,68 90,00 1,29 49,50 1,20 14,58 94,07 3,068,000,000,00 60 87,90 90,37 1,27 54,22 1,19 14,73									
77,501 3.068.000.000,00 45 101,63 88,89 1,31 40,00 1,19 12,38 83,396 3.068.000.000,00 50 95,14 89,26 1,31 44,63 1,20 13,65 89,204 3.068.000.000,00 55 89,68 90,00 1,29 49,50 1,20 14,58 94,07 3.068.000.000,00 60 87,90 90,37 1,27 54,22 1,19 14,73									
83,396 3.068.000.000,00 50 95,14 89,26 1,31 44,63 1,20 13,65 89,204 3.068.000.000,00 55 89,68 90,00 1,29 49,50 1,20 14,58 94,07 3.068.000.000,00 60 87,90 90,37 1,27 54,22 1,19 14,73									
89,204 3.068.000.000,00 55 89,68 90,00 1,29 49,50 1,20 14,58 94,07 3.068.000.000,00 60 87,90 90,37 1,27 54,22 1,19 14,73									
94,07 3.068.000.000,00 60 87,90 90,37 1,27 54,22 1,19 14,73									14,58
								1,19	14,73
									15,34
		<u> </u>							


Vazão Regularizada (90% com volume de alerta) = 4.75 m3/s Afluências não controladas


Q _{RF}	AB	Qsf	Qs	ТВ	RBCH	Q _{SF,efe}	RG	GA
(m³/s)	(m³)	(m³/s)	(m³/s)	(%)	(adim.)	(m³/s)	(adim.)	(m³/s)
9,23	170.200.000,00	5	33,56	46,393	1,93	2,32	1,31	2,16
14,21	170.200.000,00	10	22,96	61,443	1,54	6,14	1,30	3,31
19,56	170.200.000,00	15	16,93	71,02	1,39	10,65	1,27	4,16
24,62	170.200.000,00	20	14,91	76,617	1,30	15,32	1,23	4,55
29,98	170.200.000,00	25	13,13	80,721	1,25	20,18	1,20	5,05
35,06	170.200.000,00	30	11,89	83,209	1,21	24,96	1,18	5,35
39,99	170.200.000,00	35	10,59	84,328	1,19	29,51	1,17	5,73
45,20	170.200.000,00	40	9,53	85,945	1,18	34,38	1,16	6,07
50,38	170.200.000,00	45	8,75	87,189	1,16	39,24	1,15	6,40
55,54	170.200.000,00	50	7,82	88,433	1,15	44,22	1,13	6,57
60,45	170.200.000,00	55	7,38	88,557	1,14	48,71	1,13	7,00
65,63	170.200.000,00	60	6,84	89,179	1,14	53,51	1,13	7,37
70,25	170.200.000,00	65	6,43	89,303	1,13	58,05	1,12	7,45
9,617	236.200.000,00	5	34,01	54,60	1,78	2,73	1,29	2,14
14,77	236.200.000,00	10	24,18	67,79	1,48	6,78	1,28	3,24
19,97	236.200.000,00	15	20,14	75,87	1,34	11,38	1,24	3,84
25,301	236.200.000,00	20	17,16	80,72	1,27	16,14	1,21	4,41
30,7	236.200.000,00	25	14,85	84,32	1,23	21,08	1,19	4,87
35,696	236.200.000,00	30	14,34	86,07	1,20	25,82	1,17	5,13
41,25	236.200.000,00	35	12,28	88,06	1,18	30,82	1,16	5,68
46,343	236.200.000,00	40	11,26	89,06	1,17	35,62	1,15	5,97
51,45	236.200.000,00	45	10,57	90,05	1,15	40,52	1,14	6,18 6,54
56,566	236.200.000,00	50 55	9,97 9,06	90,55 91,66	1,14 1,14	45,27 50,41	1,13 1,12	6,89
62,05 66,86	236.200.000,00 236.200.000,00	60	9,00	91,54	1,14	54,93	1,12	7,18
71,69	236.200.000,00	65	8,84	91,67	1,13	59,58	1,12	7,36
71,09	250.200.000,00		0,04	31,01	1, (2	33,30	1,11	7,00
10,111	341.800.000,00	5	35,72	67,16	1,60	3,36	1,25	2,00
15,474	341.800.000,00	10	29,04	78,48	1,37	7,85	1,23	2,88
20,75	341.800.000,00	15	25,70	83,83	1,27	12,57	1,20	3,43
26,162	341.800.000,00	20	21,15	86,44	1,24	17,29	1,19	4,12
31,55	341.800.000,00	25	18,97	88,93	1,21	22,23	1,17	4,57
36,691	341.800.000,00	30	16,42	89,80	1,19	26,94	1,16	5,00
42	341.800.000,00	35 40	15,28	91,04	1,17	31,86 36,67	1,15 1,14	5,39 5,71
47,13	341.800.000,00 341.800.000,00	40 45	13,44 11,53	91,67 92,41	1,16 1,15	41,58	1,14	5,71 6,05
52,38 58,143	341.800.000,00	50	10,40	93,53	1,13	46,77	1,13	6,63
62,95	341.800.000,00	55	10,46	93,65	1,13	51,51	1,12	6,69
68,147	341.800.000,00	60	9,14	93,91	1,13	56,34	1,12	7,05
73,77	341.800.000,00	65	8,08	94,40	1,12	61,36	1,12	7,66
						4.55	4.55	4 70
10,53	447.400.000,00	5	39,72	81,21	1,42	4,06	1,20	1,72
15,962	447.400.000,00	10	33,54	87,31	1,28	8,73	1,18	2,48
21,33	447.400.000,00	15	29,82	89,92	1,23	13,49	1,17	3,09
26,731	447.400.000,00	20	26,16	91,54	1,20	18,31	1,16 1,15	3,67 4,25
32,13	447.400.000,00	25 30	22,72	92,53 93,41	1,18 1,16	23,13 28,02	1,13	4,25 4,49
37,265	447.400.000,00 447.400.000,00	35	21,18 19,22	94,15	1,15	32,95	1,14	5,06
42,763 47,813	447.400.000,00	40	18,22	94,13	1,13	37,76	1,12	5,30
53,33	447.400.000,00	45	15,21	94,90	1,14	42,71	1,12	5,87
58,777	447.400.000,00	50	12.36	95,27	1,13	47,64	1,12	6,39
64,09	447.400.000,00	55	13,26	96,02	1,12	52,81	1,11	6,53
69,459	447.400.000,00	60	12,55	96,52	1,12	57,91	1,11	6,80
						1	1,10	6,99
74,39	447.400.000,00	65	12,02	96,39	1,11	62,65	1,10	0,55





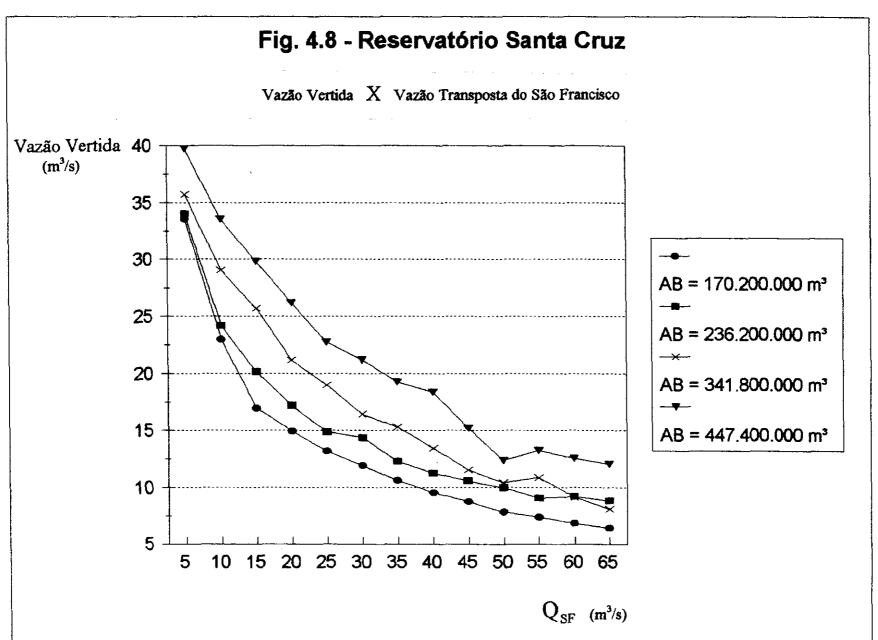
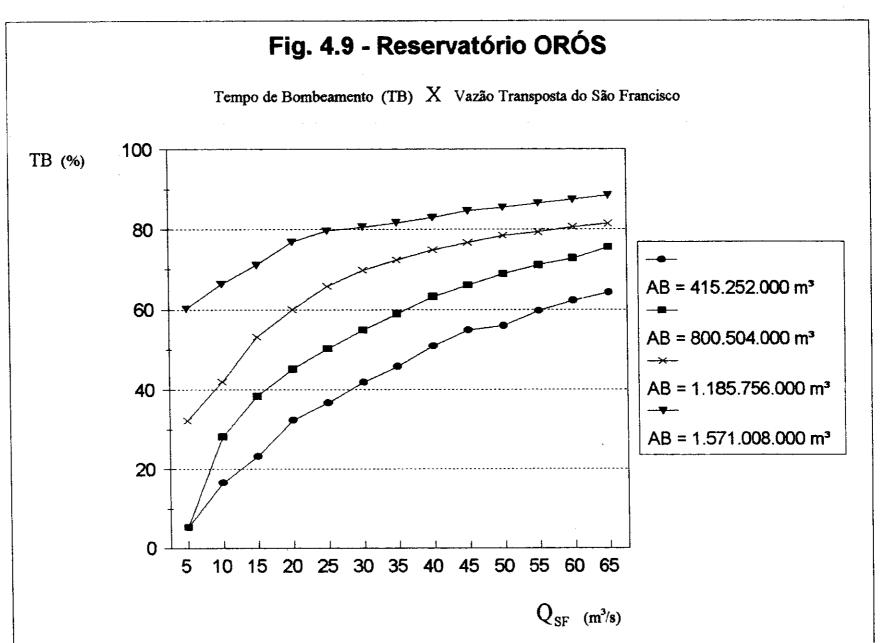
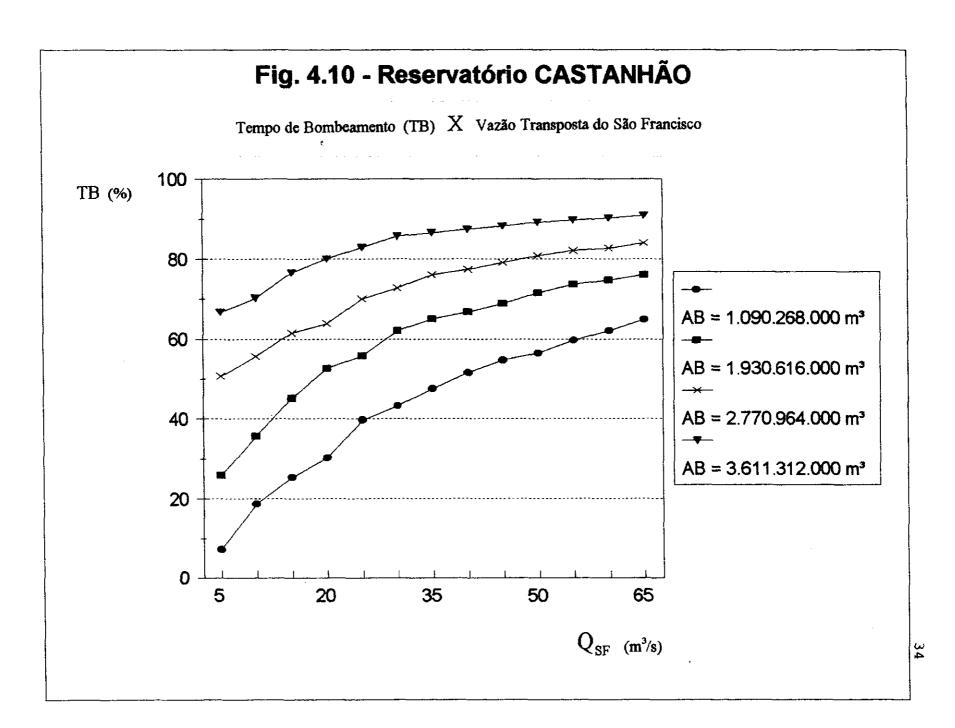


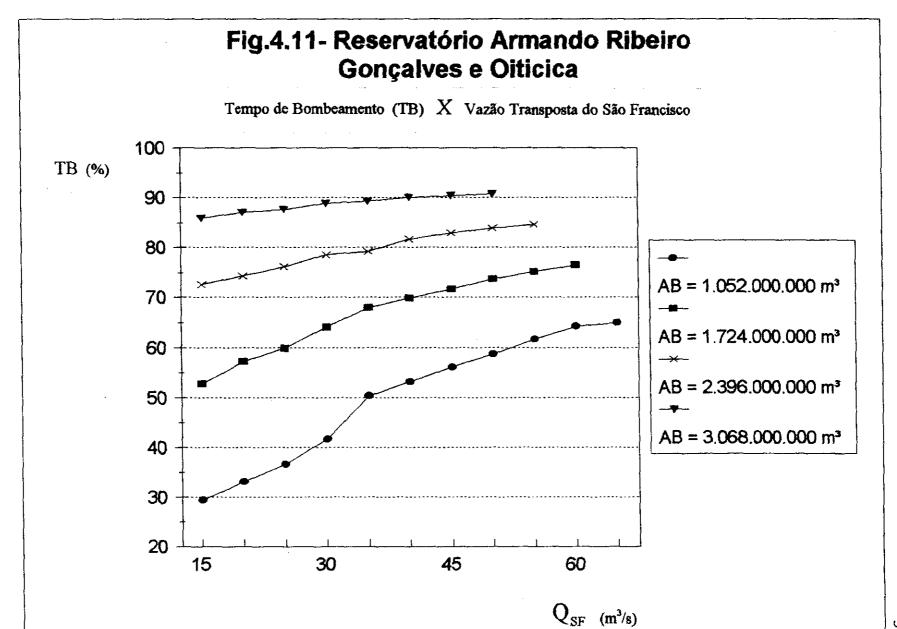
Fig 4.7 Reservatório Armando Ribeiro Gonçalves e Oiticica

Vazão Vertida X Vazão Transposta do São Francisco

Este comportamento, extremamente favorável à Transposição, deve ser atribuído a dois fatos básicos:


- a propriedade das regras de operação concebidas, com a instituição do alerta de bombeamento e do volume de alerta;
- a propriedade que a Transposição tem de mitigar duas características das séries de vazões afluentes aos reservatórios pesquisados: a forte variabilidade inter-anual e a intermitência, características típicas do escoamento nas regiões semi-áridas do nordeste brasileiro.


Em consequência, os reservatórios podem operar mais frequentemente em cotas baixas, regularizando maiores vazões; por um lado, não precisam manter maiores volumes estocados e, por outro, ficam com maior capacidade de absorver os escoamentos naturais, reduzindo as sangrias;


- c) Para uma mesma vazão transposta, melhores resultados na vazão regularizada são obtidos com alertas de bombeamento mais elevados, principalmente se tais vazões transpostas são de menor magnitude: entretanto, a necessidade de bombeamento é obviamente maior, o que se traduz em maior custo de energia;
- d) Para um mesmo alerta de bombeamento há um a relação direta entre o tempo de bombeamento e as vazões transpostas, como mostram as figuras 4.9 a 4.12;
- e) Observou-se, também, que quando as vazões bombeadas são significativas perante aquelas regularizadas normalmente pelos reservatórios, o volume de alerta tende a se confundir com o volume morto, as vazões transpostas respondendo integralmente pela manutenção da vazão de emergência igual à metade da garantida com 90%.

Quando o volume associado ao alerta de bombeamento é da mesma grandeza do volume mensal transposto (o mês é o prazo de tempo utilizado na simulação computacional), os resultados tornam-se anômalos, sem qualquer representatividade real; isto ficou claramente demonstrado para o menor dos reservatórios, Santa Cruz, na alternativa do alerta de bombeamento de 20%: a partir de $Q_{\rm SF}=50~{\rm m}^3/{\rm s}$, o volume mensal transposto era igual, ou maior, do que o do alerta de bombeamento, o que acarretou uma freqüente flutuação em torno deste volume, reduzindo-se drasticamente o tempo de bombeamento e a vazão regularizada. Por tal motivo, para a barragem Santa Cruz, o menor alerta de bombeamento considerado foi de 170 hm³, equivalente a uma vazão contínua mensal superior a 65 m³/s.

Face à grande dificuldade em analisar objetiva e quantitativamente os resultados de forma global, em virtude do forte inter-relacionamento existente entre as grandezas (vazão regularizada, vazão de transposição, tempo de bombeamento e vazão vertida), buscou-se estabelecer algum índice que pudesse traduzir os efeitos benéficos da Transposição de vazões, índice este que também possibilitasse a seleção das alternativas mais interessantes do ponto de vista hídrico.

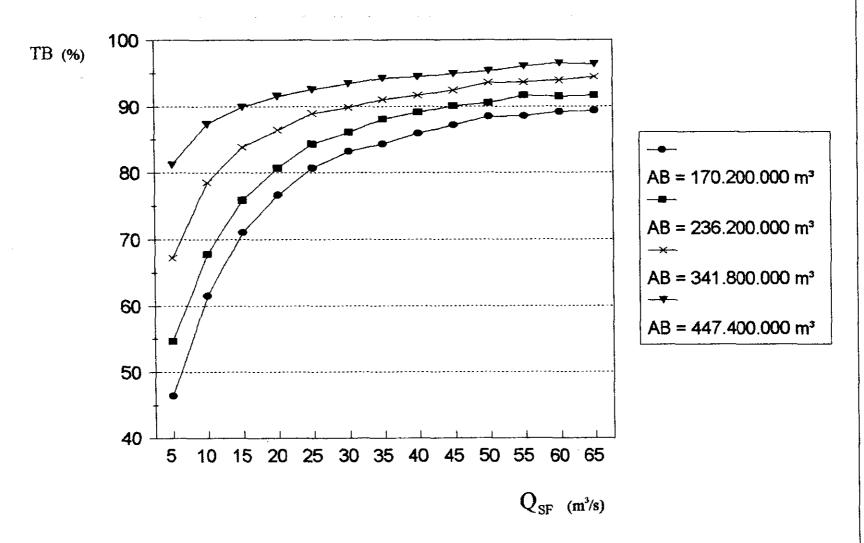


Fig.4.12 Reservatório Santa Cruz

Tempo de Bombeamento (TB) X Vazão Transposta do São Francisco

Primeiramente procurou-se um índice que buscasse traduzir uma espécie de relação beneficio/custo, sob esta ótica hídrica; neste índice o beneficio seria o aumento obtido na vazão regularizada e o custo seria a vazão efetivamente bombeada, e que representa custos de energia. A expressão de RBCH considerada foi:

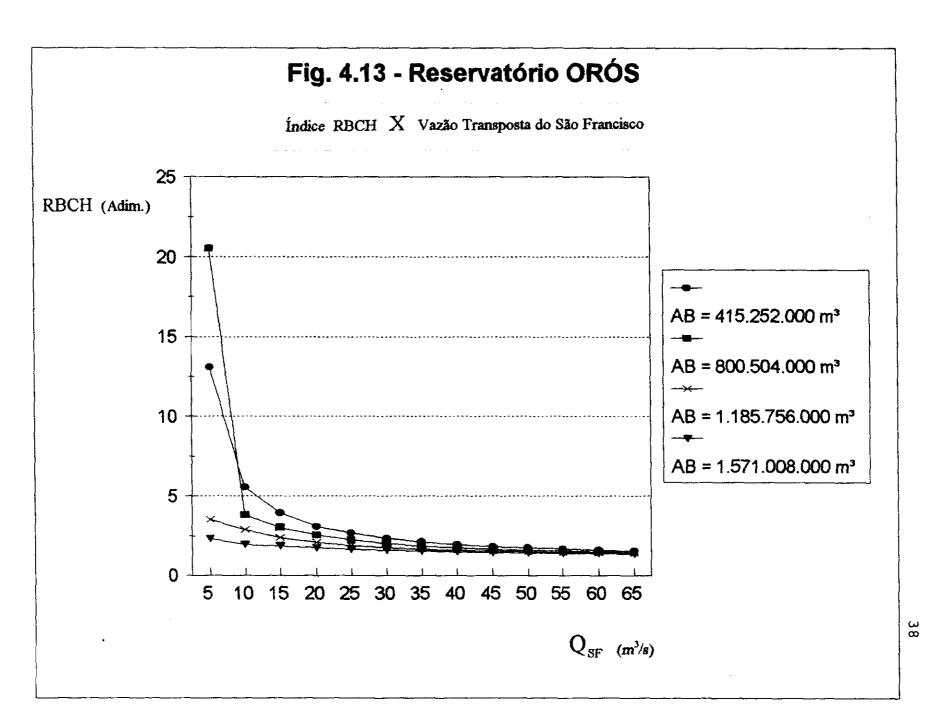
$$RBCH = \frac{Q_{RF}^{SF} - Q_{r90}}{Q_{SF} \times t_{B} / t_{sim}} \text{, onde além das variáveis já definidas anteriormente, } t_{sim} \text{ é o}$$
 tempo total da simulação.

Os resultados estão graficamente apresentados nas figuras 4.13 a 4.16.

Este índice apresentou, para praticamente todas as situações, valores superiores à unidade, indicando ganho efetivo com a Transposição, se obedecidas as regras de operação concebidas. Em geral, para as menores vazões transpostas, tais ganhos são mais significativos; as exceções ocorrem para vazões de 5 $\rm m^3/s$ no caso do sistema Armando Ribeiro Gonçalves e Oiticica, bem como para alguns níveis de bombeamento do Orós: tal comportamento, entretanto, deve ser atribuído, exclusivamente, a problemas de precisão na determinação da vazão regularizada de $\rm f=90\%$, por vezes de fato correspondentes a freqüências um pouco maiores ou menores.

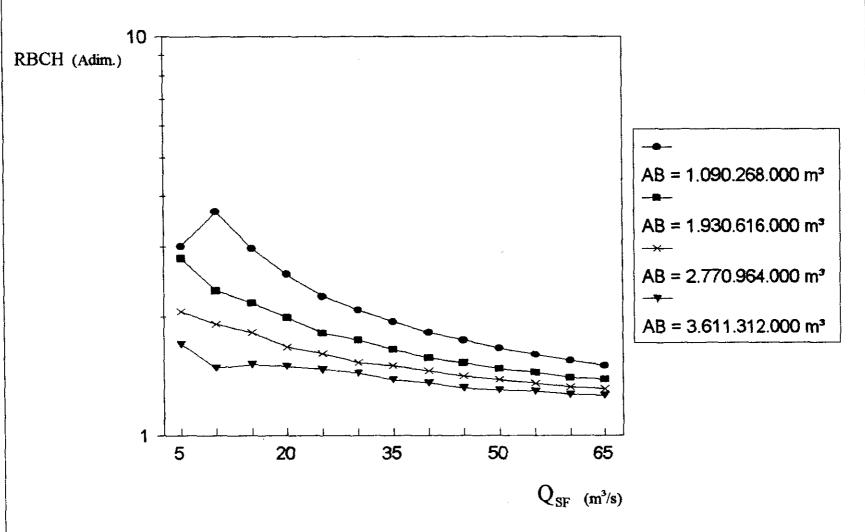
Destaque especial deve ser dado à barragem Castanhão, cujos índices refletem um acentuado ganho nas vazões regularizadas.

Constatadas, contudo, as distorções dos índices para as pequenas vazões, que são, sempre, muito maiores do que aquelas das grandes, e, ainda, uma certa dificuldade em sua interpretação, pesquisou-se um outro índice de melhor representatividade.

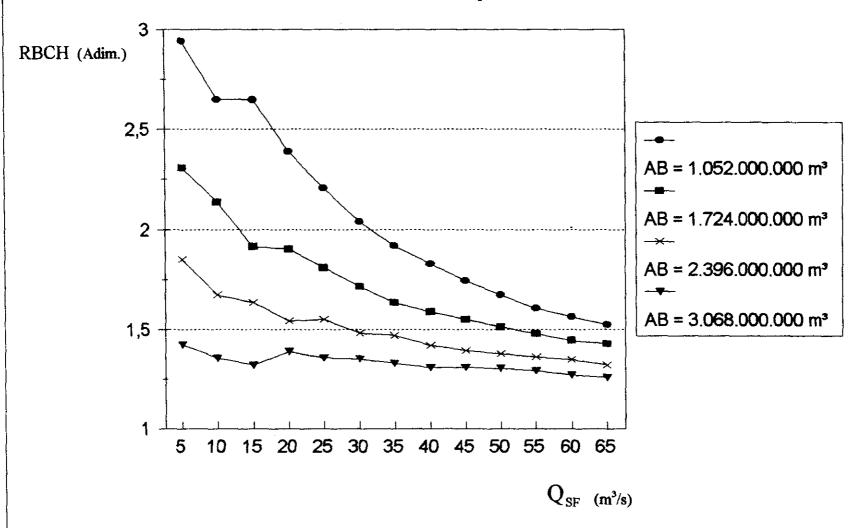

O índice RG - Real Ganho, consta nas tabelas já citadas, e corresponde à expressão:

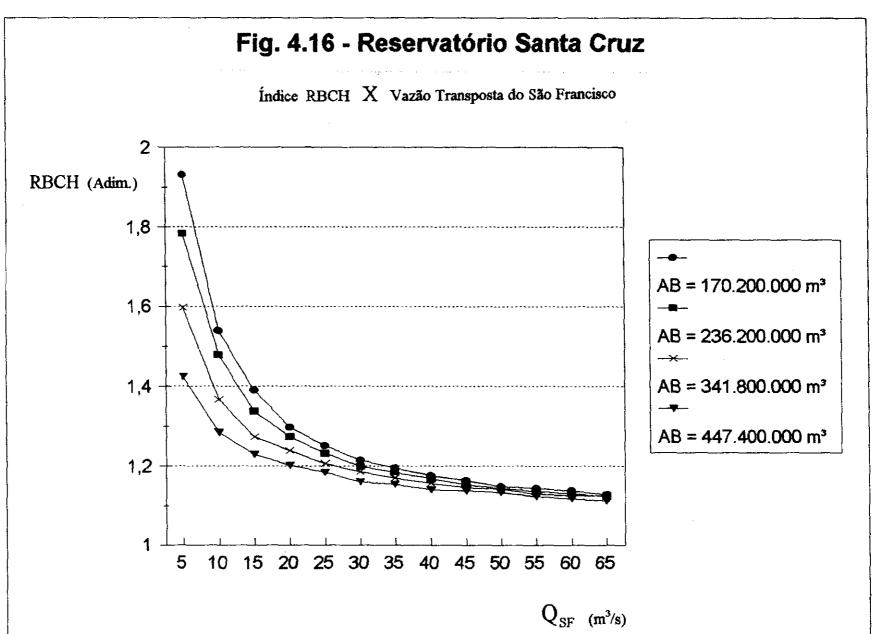
$$RG = \frac{Q_{RF}^{SF}}{Q_{r90} + Q_{SF,efe}}, \text{ onde:}$$

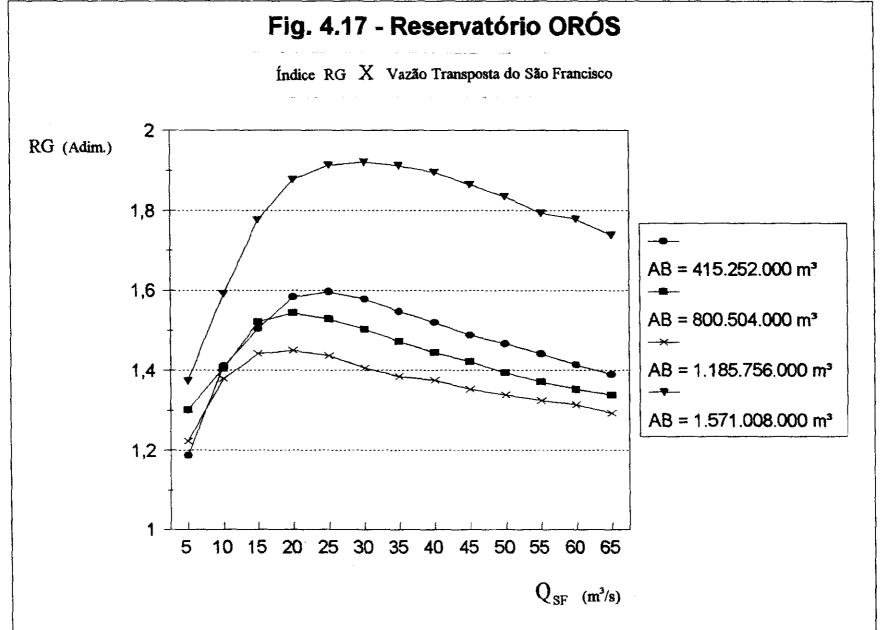
- . $Q_{RF}^{SF} \rightarrow vazão$ regularizada final quando ocorre o bombeamento de vazões transpostas;
- . Q_{r90} > vazão regularizada pelo reservatório, sem Transposição;
- . $Q_{SF,efe} \rightarrow vazão transposta efetiva, fictícia contínua.$

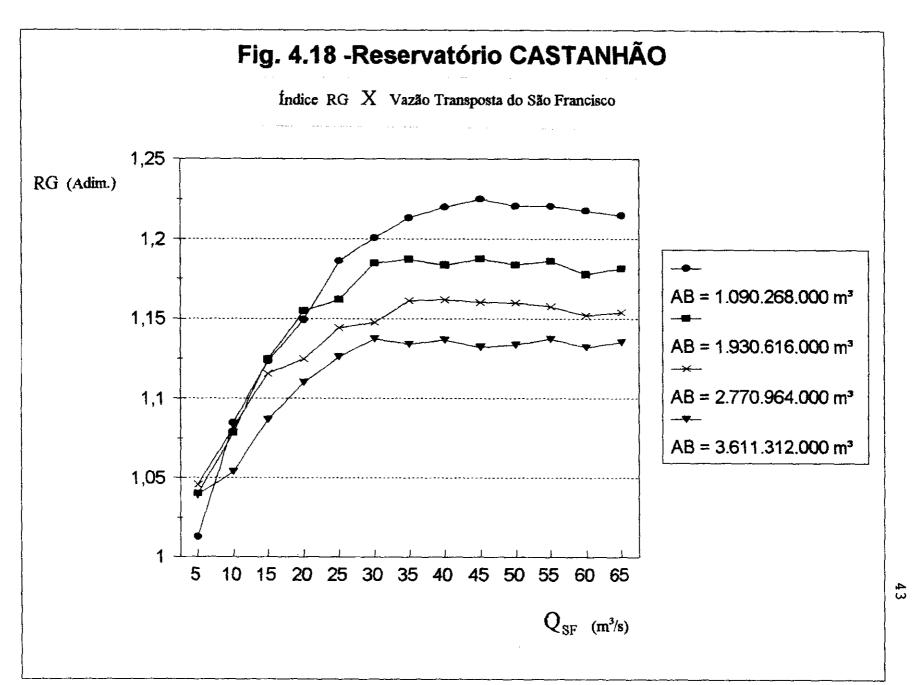

Este índice tem a propriedade de refletir fielmente o efetivo ganho de vazão decorrente da utilização de cada reservatório como elemento de compensação e segundo as regras de operação preestabelecidas.

Os resultados, mostrados tanto nos quadros já citados como nos gráficos das figuras 4.17 a 4.20, são extremamente representativos e favoráveis à Transposição como ora definida.

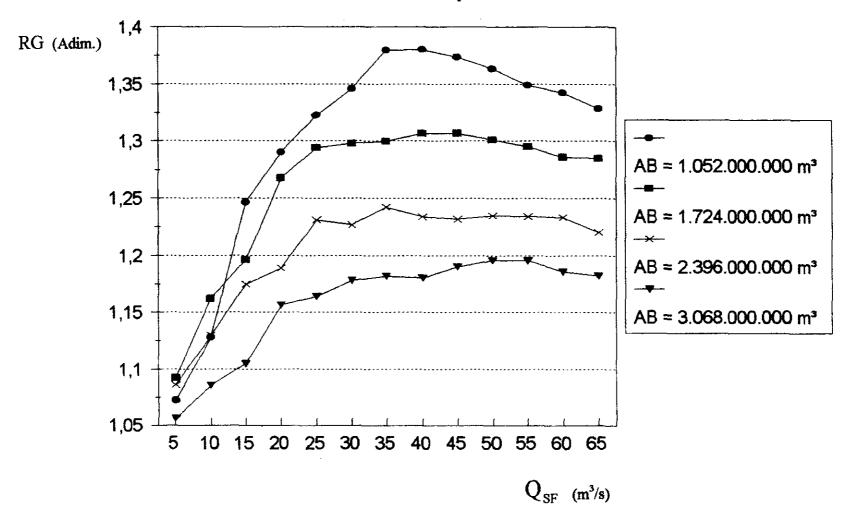


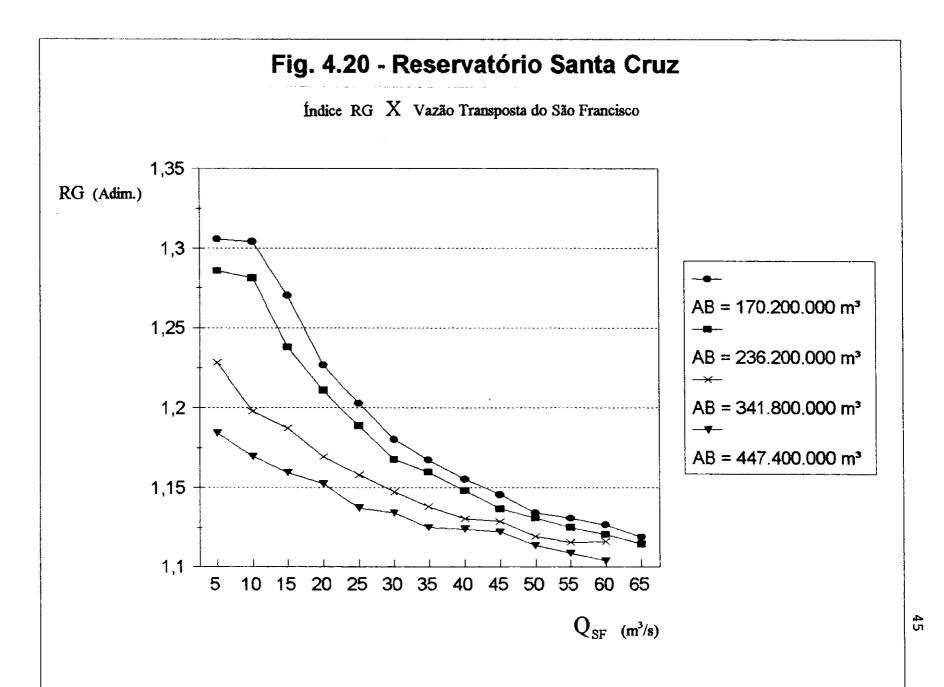

Índice RBCH X Vazão Transposta do São Francisco




Fig. 4.15 Reservatório Armando Ribeiro Gonçalves e Oiticica

Índice RBCH X Vazão Transposta do São Francisco





Índice RG X Vazão Transposta do São Francisco

Da análise destas figuras e quadros podem ser obtidas as seguintes conclusões básicas:

- a) todas as curvas apresentam-se côncavas, permitindo a seleção de "ótimos" segundo o critério concebido;
- b) os resultados indicam ganhos extraordinários de vazão em função do efeito sinérgico obtido com o uso racional dos reservatórios como compensadores; tais ganhos chegam a atingir mais de 65% sobre a simples soma das vazões regularizadas normais com as transpostas do São Francisco;
- c) em geral, os ganhos máximos estão nas vazões transpostas intermediárias, entre 30 a 40 m³/s, exceção feita ao açude Santa Cruz, o de menor porte, e que apresenta maiores ganhos de percentual nas vazões mais baixas;
- d) não se observa um comportamento comum em relação ao alerta de bombeamento; enquanto que para o Castanhão, o Santa Cruz e o Sistema Armando + Oiticica, os maiores ganhos percentuais correspondem aos menores alertas de bombeamento, situação inversa ocorre para o Orós, cujos melhores resultados estão associados ao menor nível de alerta de bombeamento;
- e) a alternativa de injetar vazões diretamente no Orós, não prevista na 1ª fase do projeto, apresenta o máximo ganho: para o alerta de bombeamento de 80%, quando a vazão transposta é de cerca de 25 a 35 m³/s, o percentual de ganho atinge mais de 80%;
- f) para o Castanhão são frequentes os ganhos da ordem de 20% e para o sistema Açu são obtidos os melhores resultados, sendo o reservatório de melhor desempenho global; este comportamento confirma a hipótese que os reservatórios de maior dimensão tendem a ser mais eficientes no processo de compensação.

No conjunto, os resultados comprovam, além da eficiência hídrica do Projeto da Transposição, a grande importância da pesquisa de regras operacionais para o sistema de barragens: deve-se supor que um estudo de longa duração e mais sofisticado destas regras possa conduzir a ganhos ainda mais significativos na disponibilidade hídrica final, considerando, também, as outras barragens de infra-estrutura de cada bacia não diretamente atingidas pelas águas da Transposição.

5 - CONFRONTO DISPONIBILIDADES X DEMANDAS

000653

5 - CONFRONTO DISPONIBILIDADES X DEMANDAS

As demandas associadas às potencialidades de solos irrigáveis, acrescidas das necessidades de abastecimento humano, superam largamente as disponibilidades hídricas das bacias, tanto as locais como aquelas previstas serem transpostas do rio São Francisco.

Tal situação reforça, ainda mais inquestionavelmente, a conclusão de que não decorrerá dos recursos hídricos - atuais ou com Transposição - a definição de quais as áreas prioritárias que devem ser irrigadas e como deve ser a efetiva repartição por bacia.

Na realidade, tal decisão deverá ser sempre baseada em critérios econômico-financeiros e políticos; somente após a elaboração do Projeto, bem como dos projetos de irrigação, poderse-á, através de análise econômico-financeira criteriosa, indicar quais os projetos prioritários, que, em última instância, estarão sujeitos à decisões e entendimentos governamentais.

De qualquer forma, entretanto, com base no nível de informações técnico-econômicas existentes e nas decisões políticas atuais, pode-se desenvolver um balanço global entre as disponibilidades hídricas efetivas e as demandas potenciais por bacia, a partir dos seguintes critérios de repartição das vazões transpostas ^{/1}:

- 1^a Fase: $Q_T = 55 \text{ m}^3/\text{s}$
 - . Bacia do Jaguaribe, no Ceará:
 - vazão transposta nominal Q_{SF,N} = 25 m³/s, para o Castanhão;
 - Bacia do Piranhas e Piancó, na Paraíba:
 - vazão transposta nominal Q_{SF,N} = 10 m³/s, com captação a fio d'água;
 - Bacia do Piranhas/Açu, no Rio Grande do Norte:
 - vazão transposta nominal $Q_{SF,N} = 5 \text{ m}^3/\text{s}$, para o sistema Armando R.G./Oiticica;
 - . Bacia do Apodi, no Rio Grande do Norte:
 - vazão transposta nominal $Q_{SF,N} = 10 \text{ m}^3/\text{s}$, para o Santa Cruz.
- Projeto Integral: $Q_T = 150 \text{ m}^3/\text{s}$
 - . Bacia do Jaguaribe, no Ceará:
 - Q_{SF,N} = 65 m³/s, sendo 15 m³/s com captação a fio d'água para áreas no Cariri e 50 m³/s para o Castanhão;
 - . Bacia do Piranhas e Piancó, na Paraíba:
 - Q_{SF,N} = 25 m³/s, com captação a fio d'água;

Considera-se somente a Transposição para os estados do Ceará, Paraíba e Rio Grande do Norte, visto que as vazões para Pernambuco permanecem na bacia do São Francisco.

- . Bacia do Piranhas/Açu, no Rio Grande do Norte:
 - $Q_{SF,N} = 35 \text{ m}^3/\text{s}$, para o sistema Armando Ribeiro Gonçalves e Oiticica;
- . Bacia do Apodi, no Rio Grande do Norte:
 - $Q_{SF,N} = 25 \text{ m}^3/\text{s}$, para o Santa Cruz.

O quadro 5.1 apresenta, conjuntamente, os resultados das disponibilidades hídricas que serão efetivamente obtidas com as duas fases do Projeto.

Por sua vez, o quadro 5.2 mostra o confronto entre as demandas potenciais e as alternativas de disponibilidades, com e sem Transposição.

Tais quadros são auto-elucidativos, não cabendo transcrever todas as informações neles existentes. Contudo, da análise dos mesmos deve-se destacar as seguintes observações básicas:

- somente com recursos hídricos locais, o deficit hídrico global atinge 350 m³/s;
- o dificit reduz-se para 193 m³/s quando o Projeto estiver integralmente implantado;
- face ao efeito sinérgico obtido com a operação adequada dos sistemas do Ceará e Rio Grande do Norte, há um ganho de vazão regularizada de quase 28 m³/s, o que representa um acréscimo de cerca de 20% da vazão efetivamente transposta para os dois estados (27,7 m³/s de ganho para Q_{SF, efe} total de 138,2 m³/s);
- para as captações a fio d'água (caso da Paraíba e área do Carirí, no Ceará) não há ganho sinérgico, pela ausência de reservatórios de compensação; da mesma forma, não foram consideradas diferenças entre a vazão transposta nominal e efetiva, ainda que certamente devam existir (e serão detectadas em estudos mais detalhados), visto que no período normal de chuvas não deverá ocorrer bombeamentos;
- além da vazão prevista para abastecimento humano (total de 11,0 m³/s), a área global irrigável será de cerca de 436 mil hectares, representando um acréscimo de 137% sobre aquela irrigável com recursos locais (184 mil ha);
- somente na 1ª etapa, o acréscimo de área irrigável já será de 87 mil hectares, isto é, cerca de 47%; em síntese, os acréscimos seriam os seguintes:

[c/RH locais	1° Estágio	Projeto Integral
CE	114	162 ⇔	230 ⇔
i		+ 48 \$ 42%	+ 116 ⇒ 102%
PB	20	30 ⇔	46 ⇔
{		+ 10 ⇒ 50%	+ 26 ⇒ 130%
RN	54	79 ⇔	160 ⇔
		+ 25 ⇒ 46%	+ 106 □ 196%

. em 1.000 ha

QUADRO 5,1
ESTIMATIVA DAS DISPONIBILIDADES HÍDRICAS COM TRANSPOSIÇÃO, ÁREA IRRIGÁVEL E GANHO DE VAZÃO REGULARIZADA COM OPERAÇÃO PROGRAMADA DOS RESERVATÓRIOS COMO ELEMENTOS COMPENSADORES

	Disponibilidades com Projeto São Francisco (m²/s)		Estimatīva das Disponibilidades	Disponibilida	de Total (m³/s)		Total	Ganhos Adicionais com a Operação					
Estado	Bacıa	Local	1º Etap	pa 1/	Projeto	integral	de outros mananciais não atingidos			Irrigável (1.000 ha) 3/		Programada dos Reservatórios 4/	
		Supndo	Q _{SF,N} Q _{SF,EFE}	°sF Q _{RF}	Q _{SF,N}	Q _{fg}	diretamente pela Transposição (m³/s) 2/	com 1ª Etapa	com Proj Integral	com 1ª Etapa	com Proj Integral	1º Etapa	2" Etapa
	Jaguaribe	Reserv Castanhão	25,0 20,7	87,2	50,0 44,6	114,8		110,5					153,1 - 139,6 = 13,5 m³/s =>22,5 mil ha
CE		Cann (a fio d'água)	-	<u>-</u>	15,0	15,0	23,3 (80,0 - 56,7)		153,1	162,0	230,0		10,5 (175 — 22,5 (1)) (12
PB	Piancó - Piranhas	(a fio d'água)	15,0	15,0	25,0	25,0	5,0	20,0	30,0	30,0	46,0	-	-
	Pıranhas / Açu	Oiticica + Arm Gonçalves	5,0 3,9	30,6	35,0 30,5	65,6	1,0	31,6	66,6	49,0 104,0			66,6 - 56,6 = 10,0 m³/s =>16,6 mil ha
RN	Apodi	Santa Cruz	10,0 8,7	16,0	25,0 23,1	32,1	5,0	21,0	37,1	30,0		21,0 - 18,4 = 2,6 m²/s => 4,3 mii ha	37,1 - 32,9 = 4,2 m³/s =>17,0 mil ha
	TOTAIS		55,0 48,3	148,8	150,0 138,2	252,5	34,3	183,1	286,8	271,0	436,0	13,0 m³/s ⇒ 21,6 mil ha	27,7 m³/s => 46,1 mil ha

^{1/} QSEAL Vazão Transposta Nominal
QSEAR Vazão Efetiva Transposta para a Melhor Alternativa de Alerta de Bombeamento

4/ Cálculo considerando -> $\frac{Q_{SF}}{Q_{RF}}$ - $(Q_{90} + Q_{SF,EFE} + outras disponibilidades locais)$

^{2/} Considerando as barragens existentes e programadas com estimativa de efeito sinérgico e Q90 e Q10 = Q90/2. No caso do Vale do Apodi, face à inexistência de estudos e projetos sobre outras barragens regularizadoras, admitiu-se como estimativa preliminar que em função da área da bacia não controlada fosse possível obter novas disponibilidades equivalentes às formecidas pela barragem Santa Cruz. No caso da Paraíba, os dados foram obtidos do PLANGESE, aplicando-se uma redução de 50% para considerar a redução da vazão garantida quando se utiliza o conceito devolume de elerta mais inexistência do colapso.

^{3/} Considerando somente as áreas atingidas pela Transposição do São Francisco descontadas as demandas de abastecimento e admitindo eficiência de 95%

QUADRO 5.2

CONFRONTO GLOBAL ENTRE DISPONIBILIDADES HÍDRICAS X DEMANDAS POTENCIAIS PARA O CEARÁ, PARAÍBA E RIO GRANDE DO NORTE

Estado	Bacia	Abastecimento Humano e	Potenciali	dades 1/	Disponibilidades Hídricas	Déficits Totais Sem Transposição	1	ransposição 3 Estados Projeto Integral como	Déficits Totais Considerando a Operação Programada dos	
		· Anımal 1/	Área Irrigável (ha)	Demanda Máxima Necessária (m³/s)	Locais	(m³/s)	$(Q_{SFN} = 70 \text{m}^3 / \text{s})$	Atualmente Proposto (Q _{SFN} = 150 m³ /s)	Reservatórios	
Ceará	Jaguanbe	8,0 2/	303.000,0	178,0	80,0	106,0	Q _{SFN} = 25,0 Q _{SF,EFE} = 20,5	Q _{SFN} = 65,0 Q _{SFEFE} = 59,6	178,0 + 8,0 - 153,0 = 33,0 m³/s	
Paraíba	Piancó Rio do Peixe Piranhas	1,0	121 600,0	77,0	14,0	64,0	Q _{SFN} = 15,0 Q _{SFEFE} = 15,0	Q _{SFN} = 25,0 Q _{SFEFE} = 25,0	77,0 + 1,0 - 30,0 = 48,0 m³/s	
Rio Grande do Norte	Pıranhas - Açu Apodı	2,0	357 000,0	214,0	36,0	180,0	Q _{SFN} = 15,0 Q _{SF,EFE} = 12,6	Q _{SF,R} = 60,0 Q _{SF,EFE} = 53,6	214,0 + 2,0 - 104,0 = 112,0 m³/s	
TOTAL	1		781.600,0	469,0	130,0	350,0		TOTAL	193,0 m³/s	

^{1/} Ministério da Integração Regional, Secretaria de Irrigação - "Plano de Gestão dos Recursos Hídricos com Derivação de Águas do Rio São Francisco", Outubro, 1994

^{2/} Inclui 5,0 m³/s para o Canal do Trabalhador, cuja opção por irrigação não foi considerada na área irrigável potencial

PARTE B - ESTUDO DO SISTEMA ADUTOR

000658

Capítulo 1 - Introdução

11 - OBJETIVOS E CONDIÇÕES DO DESENVOLVIMENTO DO TRABALHO

Os trabalhos de estudo de alternativas de ajuste do traçado do Anteprojeto às condições atuais do projeto teve como objetivo final, principalmente, no que se refere às alternativas globais de traçado, apresentar uma solução para substituição da barragem Aurora que foi eliminada do sistema de transposição Para alternativas de ajuste de trechos localizados consistiu em estudar a possibilidade de reduzir a série de barragens de transposição de vales previstos no Anteprojeto, tendo-se em consideração a redução significativa das vazões de projeto

Entretanto, em razão dos curtos prazos disponíveis para a locação de campo, tornou-se necessário a liberação progressiva e iterativa dos trechos ajustados para abertura de frentes de serviço para as equipes de topografia e geotecnia

Por conseguinte, esta atividade tornou-se o objetivo mais importante a ser perseguido, não obstante, fossem mantidos os objetivos finais supracitados. Tal condição de prazo, implicou em que as decisões fossem tomadas conjuntamente com a coordenação do Projeto Básico

Este processo progressivo e iterativo de liberação dos serviços de campo, permitiu uma favorável retroalimentação de informações para ajuste do traçado, como foi o caso da identificação pelas equipes de geotecnia, do substancial incremento dos volumes de material de 3ª categoria nas escavações dos trechos em canais. Com isto foi possível corrigir-se a tempo, eventuais equívocos na tomada de decisão de trechos preliminarmente ajustados, por conta da insuficiência de informações constantes no Anteprojeto, validando assim cada vez mais o processo adotado para desenvolvimento dos trabalhos.

12 - ANTECEDENTES - O ANTEPROJETO EXISTENTE

1 2 1 - APRESENTAÇÃO DO ANTEPROJETO

A atual fase do Projeto, iniciada quase uma década após a elaboração do Anteprojeto pelo extinto DNOS, tem seu marco inicial na firme decisão de retomada dos estudos pelo Ministério da Integração Regional - MIR, que a despeito das adversidades e incomprensões dos que desconhecem a realidade do semi-árido nordestino, que inclusive foi recentemente mais uma vez assolado pelo drama de prolongada seca, procurou viabilizar o empreendimento, mesmo que para tanto fosse necessário proceder estudos de revisão de demandas para redução das vazões de transposição inicialmente previstas no Anteprojeto.

Esta redução da vazão inicial de 300 m³/s para 70 m³/s, possivelmente, deverá ser ampliada para atender aos estudos de demandas pretendidas pelos Estados diretamente beneficiados pelo projeto da transposição

Far-se-á, a seguir, uma apresentação da concepção do Anteprojeto de engenharia de forma muito sucinta, por considerar-se que a discussão detalhada de suas características

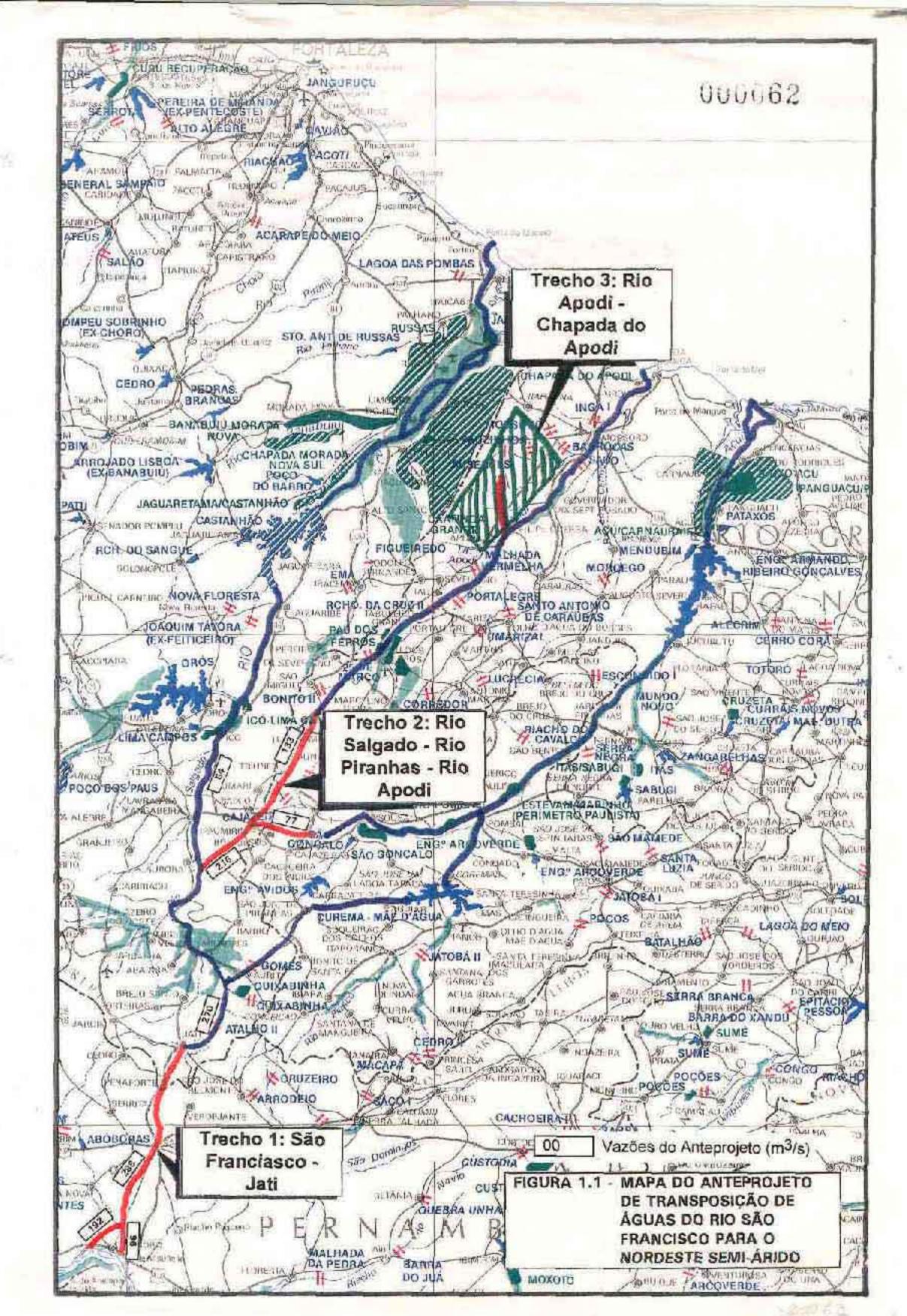
tornar-se-ía mócua e, também, sem relevância devido ao fato da redução na vazão originalmente definida.

1 2 2 - DESCRIÇÃO DO ANTEPROJETO

O projeto de derivação de águas do Rio São Francisco, localizado nos estados de Pernambuco, Ceará, Paraíba e Rio Grande do Norte, entre os paralelos 4° 00' e 9° 00' S e os meridianos de 35° 30' e 40° 30' W Gr conforme o Mapa de situação apresentado na Figura 1 1, e em maiores detalhes nos Mapas Gerais 1 e 2 na escala 1 : 100.000 apresentados no Anexo 1 - Desenhos, beneficia diretamente as bacias

- . Brígida, Terra Nova e Pajeú, em Pernambuco,
- . Jaguaribe, Pırangi e Choró no Ceará,
- . Pıranhas-Açu na Paraíba e Rio Grande do Norte e,
- . Apodi no Rio Grande do Norte

Os estudos anteriormente desenvolvidos a nível de Anteprojeto, definiram o traçado final, no qual foram consideradas três tipos de obras.


- . sistema adutor principal, considerado para atingir uma vazão máxima de 300 m³/s ao final da implantação,
- . sistemas de distribuição compostos de captações e demais obras de adução até aos pontos de demanda e,
- . os sistemas de irrigação "on farm"

O sistema adutor principal é composto por três trechos descritos a seguir:

a) Trecho Rio São Francisco - Jati

Este trecho, com uma altura de bombeamento de aproximadamente 160 m, se iniciaria na tomada d'água localizada no braço do Assunção, em Cabrobó (PE), e terminaria na barragem derivadora e hidroelétrica de Cachoeirinha no leito do Riacho dos Porcos, já na bacia do Jaguaribe

A partir da tomada d'água, situada à cota média 315 m, a água seria conduzida por um canal de aproximadamente 3 607 m de extensão até o ponto da elevatória, designada como 1º estágio, que recalcaria uma vazão máxima de 128 m³/s até um outro canal na cota 350 m, com comprimento de 3 882 m, que conduziria até a barragem Barro Vermelho Nesta barragem estaria prevista a junção com o canal originado na barragem Velha Isabel, que conduziria as águas bombeadas diretamente do no São Francisco por outra elevatória (2º estágio), com vazão máxima de 192 m³/s e, com implantação prevista no quarto quinquênio de implementação do Projeto Esta elevatória teria uma altura de bombeamento de aproximadamente 28 m, e as águas captadas seriam conduzidas por uma sequência de canais e barragens numa extensão de,

aproximadamente, 18 km até a barragem Barro Vermelho anteriormente citada Este estágio de bombeamento, entretanto, poderia ser eliminado com a construção do reservatório de Pedra Branca no Leito do São Francisco

A partir da barragem Barro Vermelho a água seria conduzida, também, por canais e barragens por extensão de cerca de 32 km até a elevatória Terra Nova com altura de elevação aproximada de 58 m, a vazão máxima conduzida neste segmento seria de 288 m³/s

A cota média atingida pela elevatória de Terra Nova seria de aproximadamente 405 m, na qual se desenvolveria um trecho de cerca de 24 km, até a elevatória de Salgueiro Neste segmento, o ponto de destaque seria o aqueduto Salgueiro com 1 084 m de comprimento

A elevatória de Salgueiro alcançaria a cota aproximada de 484 m O segmento iniciado nesta elevatória constituiria o tramo final do trecho São Francisco - Jati e, teria um percurso total de cerca de 76 km Neste segmento seria conduzida uma vazão máxima de 288 m³/s até a tomada Brígida, localizada a aproximadamente 12,5 km a jusante da elevatória, ponto em que a vazão máxima seria reduzida para 270 m³/s Cerca de 27 km a jusante desta tomada, seria feita a Transposição do divisor de Pernambuco e Ceará, através do túnel Milagre-Jati, atingindo o riacho Sabonete, onde estaria prevista a barragem Jati, cuja função seria de geração de energia Aproximadamente à 20 km da barragem de Jati, localizar-se-ía a barragem de Cachoeirinha, no leito do Riacho dos Porcos, também com função de gerar energia, além de derivar água para a região do Cariri. A partir desta barragem, as águas seriam conduzidas no leito do Riacho dos Porcos, afluente do rio Salgado

As derivações previstas atenderiam os seguintes perímetros várzeas e tabuleiros do Terra Nova, várzeas do Pajeú, várzeas e tabuleiros do Brígida - São Pedro, montante de Jati, Cariri, várzeas do Piancó

b) Trecho Rio Salgado - Rio Piranhas - Rio Apodi

Iniciar-se-ía na barragem Aurora, com implantação prevista no leito do rio Salgado nas proximidades da cidade com o mesmo nome Esta barragem teria as funções de regularização das vazões afluentes do Salgado, geração de energia e a derivação para a bacia Piranhas - Apodi

Deste ponto, então, seria conduzida um vazão de 216 m³/s, por um conjunto de canais, barragens e túneis que transporiam os afluentes do Salgado numa extensão aproximada de 37,5 km até o túnel Jitirana - Umburanas, que atravessaria o divisor das bacias do Salgado e Piranhas Este segmento desenvolver-se-ía da cota 307 a 302 m Após a Transposição deste divisor, nova sequência de canais e barragens conduziria as águas até a barragem Bom Jesus IV, localizada 26 km a jusante do divisor, onde seria feita a derivação para o rio Piranhas

Após a derivação do Piranhas aproximadamente na cota 300 m, a condução seria realizada em um percurso de cerca de 62 km, até o divisor das bacias do Piranhas e Apodi, onde seriam lançadas as águas no leito do rio Apodi nas proximidades da cidade de Major Sales Este segmento conduziria uma vazão máxima de 140 m³/s

Da barragem Bom Jesus IV, ponto de derivação do Piranhas, partiria um canal conduzindo uma vazão máxima de 77 m³/s até a barragem Lagoa do Arroz, hoje já construída, no leito do rio Cacaré pela margem esquerda do Piranhas

Os perímetros a serem atendidos por este trecho seriam várzeas do Peixe, várzeas do Sousa, várzeas do Alto e Médio Piranhas, tabuleiros do Carmo-Piranhas, Baixo Açu, tabuleiros do Piranhas-Cabuji, tabuleiros de Bela Vista e tabuleiros de Jandaíra, sendo os cinco últimos atendidos pela barragem Armando Ribeiro Gonçalves, situada no Baixo Açu, que captaria parte das águas lançadas no riacho Cacaré

c) Trecho Rio Apodi - Chapada do Apodi e Rio Jaguaribe - Chapada do Apodi

Estes sistemas complementares serviriam, principalmente, para aduzir a água para a irrigação da Chapada do Apodi, a partir dos rios Apodi e Jaguaribe

No Quadro 1 1 são apresentados por trechos e subtrechos todos os dados básicos principais das obras componentes do Sistema de Adução da Transposição

1 2 3 - CONCEPÇÃO E FASES DE IMPLANTAÇÃO

A sua concepção foi baseada em três premissas básicas grande quantidade de terras férteis subtilizadas no semi-árido nordestino, existência de uma infra-estrutura econômico-social relativamente desenvolvida e, possibilidade técnica de complementar a utilização dos recursos hídricos e a operação dos reservatórios existentes na região, a partir dos levantamentos topográficos e edafoclimáticos e de estudos de engenharia a nível de planejamento preliminar.

A concepção funcional do sistema adutor foi baseada, conforme os relatórios do Anteprojeto, nos seguintes critérios

- . sistema operando à plena capacidade 24 horas por dia, nos canais, túneis e barragens,
- . elevatórias operando 20 horas por dia, sendo a vazão no restante do sistema mantida pelas barragens à jusante destas,
- . acumulação de água para atender a demanda de ponta da irrigação feita fora do Sistema Adutor Principal, exceto para a água destinada à Chapada do Apodi,
- . o fornecimento de energia elétrica às elevatórias realizado pelas hidroelétricas de Jati e Cachoerinha e complementado pelo sistema CHESF

QUADRO 11 Dados Básicos e Características Gerais do Sistema do Anteprojeto

				1º Trecho São	Francisco Jati			2º Trecho Salgado Piranhas Apodi						
Discriminação das Obras e Dados Básicos e Elementos de Custos		Captação (Braço	1º Sub-Trecho Assunção + São Fran	cisco)/ Terra Nova	2° Sub-Trecho 3° Sub-Trecho Terra Nova / Salgueiro /		Trecho Leito Natural	1° Sub-Trecho Salgado-Jitrana/	2º Sub-Trecho Umburana / Bom Jesus (V	3° Sub-Trecho Born Jesus (V/ Major Sales	TOTAL 2	•		
				Salgueiro (PE)	Jati (CE)	TOTAL 1	Jati/SAlgado Barragem Aurora	Umburana				TOTAL GERAL (1 + 2)		
1	VAZÕES DO SISTEMA							<u> </u>	<u></u>					
11_	Vazão máxima de dimensionamento do trecho	96/128	192	288	288	288		270	216	216	139			
1 2	Vazão derivada no Trecho		-	-		18,00	·	54	T	77			i ————	
13	Altura Manométrica no Inicio do Trecho	29 75	31,64	30 88	59,37	81,73	171,98	-						
1 4	Altura Manométrica Acumulada no Trecho	29 75	31,64	30,88	90,25	171,98	171,98		· -		- 1		í ——·—	
2	DADOS PRINCIPAIS DAS OBRAS COMPONENTES		_											
21	Canals (km)	27,09	10,93	38,02	17 16	31,19	86,37		7,91	16,06	62 83	86.80	173,1	
22	Túneis (km)		•	-	-	1,51	1,51		2.74	0.40	4 85			
23	Aqueduto/Sifões (km)	-			1,08	-	1.08		-	-			1,01	
24	Desapropriações e interferências (ha)	4 326,75	1 401 75	5 728,50	987,60	2 415,30	9 131,40	8 580,00	6 183,75	1 583.70	1 287 60	17 635,05		
25	Linhas de Transmissão 230 KV (km)	30,00	13,00	43,00	2 x 25	2 x 6	105,00					-	105,00	
28	Barragens (Unidades)	5,00	4,00	9,00	3,00	8.00	20.00	1.00	5 00	9,00	5 00	20,00	40,00	
2 6 a	Volume Acumulado (Enchimento incial) 104 m²	133 050 00	62 200,00	195 250,00	44 500,00	131 090,00	370,840,00	837 000,00	449 150,00	61 970 00	9 800,00	1 357 920,00	1 728 760,00	
26 b	Área Inundada (Evaporação) ha	3 267,00	1 031,00	4 298,00	595,00	1 604,00	6,497,00	7 800 00	5 020,00	1 144 00	227,00	14 191.00	20 688,00	
2 B C	Volume Anual Evaporado (10º m²/ano)	56 573,29	18 432,90	75 006,19	10 156,65	26 769,38	111 932,22		63 935,20	14 816 46	3 098,13	81 849,79	193 782,01	
2 B d	Vazão Média Contínua de Evaporação (m²/s)	1,79		2,37	0 32	0,85	3,54		2,03	0.47	0.10	2,60	6,14	
28€	Tempo de Enchimento das Barragens do Trecho para a Vazão inicial	22,00	6,54	28,54	9,36	27,59	65,49	-	173,28	23,91	3.78	200,97	266,46	
27	Estações Elevatórias (Nome)	Capt. 1	Capt. 2	Capt, (1+2)	Terra Nova	Salgueiro			,,,,,,,					
27a	Altura Manométrica da Elevatória (m c a)	29.75		30,88	59 37	81,73	171,98		-	-			171,98	
27b	Vazāo Máxima (m³/s)	128	192	288/320	288	280							11 1700	
27 c	Potěncia instalada (MW)	44,80	67 20	112.00	220.00	304.00	636,00		·			<u>:</u>	636,00	

Arq Trec3 wb1

0001165 8

A implementação do sistema adutor foi faseada em seis quinquênios, em consonância com a implantação dos perímetros, prevista em 30 anos, da seguinte forma

- 1º quinquênio Trecho Rio São Francisco Jati
 (Elevatória São Francisco 1º estágio)
- 2º quinquênio Trecho Rio Salgado Rio Piranhas
- . 3º quinquênio Trecho Rio Piranhas Rio Apodi
- 4º quinquênio Trecho Rio São Francisco Jati
 (Elevatória São Francisco 2º estágio)
- 5° quinquênio Trecho Rio Apodi Chapada do Apodi (até Quixaba)
- 6º quinquênio Trecho Rio Apodi Chapada do Apodi (até Quixaba)

124 - Os Custos de Investimentos do Anteprojeto

Todos os custos de investimentos do projeto original, com exceção das usinas hidrelétricas foram consolidadas no Quadro 1 2, com base nos relatórios do Anteprojeto

QUADRO 1.2 Custo de Investimentos Globais do Sistema do Anteprojeto (US\$ x 10³)

	T			1º Trecho São	rancisco - Jati								
Ordem	Discriminação das Obras e Custos	Captação (Braço /	2º Sub-Trecho Terra Nova /	3° Sub-Trecho Selgueiro /		Trecho Leito Natural	1° Sub-Trecho Selgado-Järene/	2 ⁶ Sub-Trecho Umburena /	3° Sub-Trecha Bom Jenus IV/		TOTAL		
Ordeni		1º Estiglo Braço Assunção / Terra Nova	2º Estágio São Francisco / Vermelho	Total	Selgueiro (PE)	Jetl (CE)	TOTAL 1	Jatl/SAlgado	Umburana	Bom Josus IV	Major Sales	TOTAL 2	GERAL (1+2)
	DADOS BÁSICOS DO SISTEMA												
	Vazão máxima de dimensionamento do trecho	96/128	192	288	288	288	}	270	216	216	139		l
	Vazão derivada no Trecho					18 00		54		77			
	Altura Manométrica no Inicio do Trecho	29,75	31,64	30 68	59,37	81 73	171,98						
	Altura Manométrica Acumulada no Trecho	29 75	31,64	30 88	90 25	171,98	171,98						L
1	CUSTO DE INVESTIMENTO												
11	Canais	59 384 03	21 461,28	80 845 31	48 096 17	103 115,68	232 057,16		26 911 88	26 551 61	137 119 01	190 582,50	422 639,66
12	Tuneis					14 722,35	14 722,35		30 277 95	3 711,97	30 357,66	64 347,58	79 069,93
	Sifões e Aquedutos				20 867,89		20 867,89				3 003,62	3 003,62	23 871,51
14	Linhas de Transmissão	2 045 62	888,91	2 934,53	2 495 07	684,72	6 114,32						6 114,32
15	Drenagem e Obras Complementares	5 020,69	1 226,79	6 247,48	3 426,32	6 479 51	16 153,31	15 444 10	6 032 00	6 457,80	1 348,70	29 282,60	45,435,91
	Barragens	14 755,06	19 252,99	34 008 05	10 683 38	17 950,09	62 641,52	35 329,48	35 740,65	17 029 63	3 701 72	91 801,48	154.443,00
	Elevatónas	44 018,15	59 193 03	103 211,18	125 299,88	147 085,37	375 596,43						375 596,43
	CUSTO TOTAL	125 223,55	102 023,00	227 246,55	210 868,71	290.037,72	728 152,98	50 773,58	98 962,48	53 751,01	175 530,71	379 017,78	1 107 170,76

Arg TREC2 W91/8

Obs Não estão incluidos as Hidrelétricas

600067 B

CAPÍTULO 2: ANÁLISE DA CONCEPÇÃO TÉCNICA DO TRAÇADO ORIGINAL E METODOLOGIA DOS ESTUDOS DE ALTERNATIVAS

000668

2 1 - ANÁLISE DA CONCEPÇÃO TÉCNICA E CONDICIONANTES DA CAPTAÇÃO E DO TRAÇADO DO ANTEPROJETO NO TRECHO 1 - SÃO FRANCISCO - JATI

2 1 1 - A CAPTAÇÃO DO ANTEPROJETO ALTERNATIVAS ESTUDADAS

No Volume 1 - Textos - Estudo de Alternativas de Traçado, para o trecho São Francisco - Jati, foram estudadas, para demanda máxima de 300 m³/s, seis hipóteses de captação na vizinhança da cidade de Cabrobó, todas elas situando-se no braço Assunção do rio São Francisco ou no próprio rio principal

Tal análise indicou como solução otimizada a implantação da captação em duas etapas, na forma apresentada a seguir

- Primeira Etapa tomada d'água a ser implantada no início do projeto, localizada à margem do canal de Cabrobó, que se origina no braço Assunção, com vazão média de 96 m³/s e vazão máxima limitada à 128 m³/s, que é a capacidade máxima de condução deste canal Assunção
- Segunda Etapa tomada d'água que entraria em operação no 4º quinquênio, localizada diretamente no no São Francisco, aproximadamente 1.0 km da embocadura do canal de Cabrobó, com capacidade máxima de 192 m³/s, para juntamente com a primeira etapa totalizar a vazão de 288 m³/s, que é a demanda máxima considerada no Anteprojeto

2 1 2 - CONDICIONANTES E COMENTÁRIOS SOBRE A SOLUÇÃO DE CAPTAÇÃO ADOTADA NO ANTEPROJETO

Pela análise dos estudos realizados, das condições naturais locais, e pela estratégica posição geográfica que se evidencia com o ponto onde o rio São Francisco mais se aproxima do Estado do Ceará (divisor dos rios Terra Nova e Jaguaribe), conclui-se, que o local escolhido para a primeira etapa do Anteprojeto, será, também, o mais viável técnico-economicamente para a captação do atual Projeto Básico com vazão inicial de 70,00 m³/s

Dependendo dos resultados do levantamento topo-batimétrico e dos estudos morfológicos a serem realizados pelo grupo de trabalho do Ministério da Integração Regional, isto é, se não se evidenciar nenhum fato novo que prejudique os resultados do Anteprojeto, pode-se afirmar que os trabalhos relativos à captação se constituirão, primordialmente, no ajuste das obras de Transposição às novas condições de vazões do Projeto Básico

2 1 3 - O TRAÇADO DO ANTEPROJETO ALTERNATIVAS

O traçado do Anteprojeto que se desenvolve por 145 km do São Francisco a Jati é composto de um sistema misto de 86 km de canais. 16 barragens e 4 estações elevatórias sendo duas na captação

O traçado pode ser observado com detalhes nos Mapas Gerais 1 e 2 do Anexo 1 - Desenhos, ou na Figura 1 1 - Mapa do Anteprojeto, já apresentado no Capítulo Introdutório

Segundo os Estudos de Alternativas referentes a definição deste traçado para o Trecho 1 (São Francisco - Jati) foram analisadas diversas variantes para os diferente segmentos que o compõem, dentre os quais se destacam

a Localização do eixo da barragem Terra Nova

Tendo em vista, a alta densidade demográfica verificada no vale do riacho Terra Nova e sua estrutura rural dotada de rodovias vicinais, eletrificação rural, pequenas barragens, o DNOS recomendou evitar o máximo a formação de grandes lagos

Foram então estudadas duas alternativas de Transposição deste vale considerando dois diferentes eixos de barramento (eixo V e eixo VI).

A conclusão deste estudo definiu a adoção da escolha do eixo VI (localizado mais a montante) para o local do barramento e a inclusão de mais uma pequena barragem (Mari), no afluente da margem direita do riacho Terra Nova, mesmo apresentando, essa alternativa, um custo superior de 7,39%

b Segmento Elevatória Terra Nova-Cerrado

As alternativas estudadas para este segmento, se referem à travessia do riacho Salgueiro e dos afluentes do Terra Nova, até a barragem Cerrado no riacho Milagres

Para a travessia do vale do riacho Salgueiro, duas variantes de traçado foram estudadas barragem e aqueduto

A variante barragem, seria uma única grande barragem, a partir da qual seria instalada uma elevatória que transporia a Serra dos Negreiros, e daí conduzindo a água até a barragem Cerrado. A outra variante, alternativa escolhida, caracterizase pela travessia do riacho Salgueiro através de aqueduto e de seus afluentes por quatro barragens de menor porte. Esta alternativa está associada a uma elevatória

Para a transposição da Serra Negreiros, também foi analisada a possibilidade da construção de um túnel de 1 500 m, entretanto a opção escolhida foi a de elevatória, denominada como elevatória Salgueiro

c Segmento Milagres - Jati

As alternativas de rota estudadas neste segmento foram definidas como variante oeste e variante leste, ambas transpondo o divisor em cotas suficiente elevadas, com três opções (475, 480 e 485 m), para que se desenvolvessem por canais.

reduzindo assim a extensão do túnel A rota escolhida foi a variante leste e sua otimização se constitui, ainda, da análise de diferentes declividades para o trecho em canal e de duas concepções para o túnel único ou duplo. Os estudos econômicos definiram a conveniência de que o divisor deveria ser transposto na cota 480, em função do balanceamento entre os custos deste segmento e do anterior (Salgueiro-Milagres).

2 1 4 - CONDIÇÕES OPERACIONAIS E PERDAS POR EVAPORAÇÃO NOS LAGOS DOS RESERVATÓRIOS DO TRECHO 1

O Anteprojeto prevê uma regra operacional para o sistema de canais e barramentos em série com base apenas nos condicionantes hidráulicos do projeto. A operação, à primeira vista, seria bastante simplificada, mantendo-se os reservatórios sempre cheios, em níveis aproximadamente constantes, para possibilitar a simples comunicação entre os canais, independente da variação da vazão.

Esse tipo de operação, aparentemente fácil de ser viabilizada, teria um custo elevado, pois expõe os espelhos d'água a um regime evaporativo severo, sempre atuante sobre as superfícies máximas dos reservatórios, que provoca perdas facilmente quantificáveis.

Para calcular essas perdas, foi considerada a taxa de evaporação anual de 2 257 mm adotada no Anteprojeto. Aplicando-se esse valor sobre os espelhos d'água máximos dos reservatórios, obtêm-se o volume evaporado anual O Quadro 2 1 mostra os dados e elementos básicos das barragens do Trecho 1

No trecho 1 avaliou-se as perdas de 16 barragens, da Barro Vermelho até Milagres, que totalizam 5.466 ha de espelho d'água, provocando uma perda de ± 3,00 m³/s em média.

Nos Quadros 2.7a e 27b, apresentados mais adiante consta, o custo anual de bombeamento, relativos às perdas e enchimentos das barragens, considerando-se o custo atual de energia (28,79 US\$/MWh) e os custos relativos a recuperação do investimento e operação e manutenção do sistema

Somente pela evaporação, no trecho 1, incluindo-se o 2º estágio, atinge-se o valor de cerca de US\$ 803×10^3 por ano, o que, capitalizado ao longo da vida útil do projeto, impõe um custo econômico significativo, aproximadamente de US\$ $9,91 \times 10^6$, se considerarmos também o custo de enchimento inicial e taxas de juros de 12% a a

Como pode ser observado, a vazão total perdida por evaporação é de 3,0 m³/s, sendo que mais da metade desse valor é resultado das perdas dos reservatórios Terra Nova, Mangueira, Severino e Milagres

Por consequência, para as condições atuais do projeto com a vazão bastante reduzida, o custo do m³/s final bombeado aumentará, se forem mantidas todas as barragens da concepção original

QUADRO 2.1 TRECHO 1: São Francisco - Jati

Dados e Elementos Básicos das Barragens de Travessia de Vales Conforme Ante-projeto

		Sub-		(Braço Assunicial = 70 (r				ova				/ Salgueiro ax = 165 (m						recho 3; Sa = 55 (m3/s)						Total (Sub.1+2+3)
		1 BARRO	2 ANGICO	3 MARIA	4 MARÍ	5 TERRA	5 R TERRA	SUB TOTAL 1	6 PORTELA	7 BARRA	8 MANGUEIR	8 R MANGUEIR	SUB- TOTAL 2	9 NEGREIROS	10 CERRADO	11 TANAJURA	12 SAÚVA	13 SEVERINO	14 PADRE	15 ÁGUA	16 MILAGRES	16 R MILAGRES	SUB- TOTAL 3	
Descrição		VERMELHO	701010	PRETA			NOVA(RED.)					(RED.)	(6 a 8)						CICERO	BENTA		(RED.)	(9 a 16)	!
a - Área da Bacia Hidrográfica (km 2)		101,50	28,10	14,09	8,20	3.265,00		3.414,89	4,14	5,27	31,59		41,00	12,52	3,11	0,89	0,98	24,94	1,69	1,78	96,25		142,16	3.598,05
Área da Bacia Hidráulica	b - Área (ha)	644,00	180,00	154,00	49,00	2.260,00	1.100,00	3.267,00	112,00	123,00	360,00	180,00	595,00	119,00	109,00	21,00	35,00	587,00	49,00	24,00	660,00	226,00	1.604,00	5.466,00
	c - Cota (m)	352,74	352,19	351,54	351,26	350,68	350,68	_	405,67	405,63	405,33	405,33		484,38	483,14	483,10	483,04	483,00	482.78	482,45	165,00	165,00		
d - Precipitação Média Anual (mm)		470,00	470,00	470,00	470,00	550,00	550,00		550,00	550,00	550,00	550,00		570,00	560,00	580,00	580,00	580,00	800,00	600,00	600,00	600,00	-	
e - Evaporação Média Anual Reservatório (n	nm)	2.257,00	2.257,00	2.257,00	2.257,00	2.257,00	2.257,00	<u> </u>	2,257,00	2.257,00	2,257,00	2.257.00		2.257,00	2.257,00	2.257,00	2.257,00	2.257,00	2,257,00	2.257,00	2.257,00	2:257,00		
f - Altura Máxima (m) Ref. Terreno Natural		18,00	14,00	14,00	15,00	16,50	13,00	_	21,50	23,00	22,00	28,00		24,00	37,50	27,50	33,00	35,50	27,00	19,50	31,00	15,00		
g - Comprimento da Crista (m)		1,480,00	925,00	1,145,00	680,00	580,00	200,00		640,00	810,00	960,00	390.66		195,00	790,00	365,00	390,00	485,00	1,035,00	175,00	630,00	200,00		
h - Volume Acumulado 10º m²		28.000,00	6.050,00	7.300,00	2.000,00	89.700,00	35.000,00	133.050,00	7,000,00	9.500,00	28,000,00	12,000,00	44,500,00	8.800,00	8.200,00	2,500,00	3,500,00	48,000,00	3,380,00	1.110,00	55.500,00	12 900,00	131.090,00	308,640,00
i - Volume anual Evaporado 10º (m²/ano)		11,508,28	2,859,20	2,751,98	875,63	38.578,20	18,777,00	56.573,29	1,911,84	2.099,61	6.145,20	3.562.05	10.158,65	2,007,53	1,827,93	352,17	586,95	9,843,99	811,93	397,68	10.935.20	3.645,40	26.764,38	93.494,32
i - Vazão Continua Evaporada (m³/s)		0,36	0,09	0,09	0,03	1,22	0,80	1,79	0,06	0,07	0,19	0.10	0,32	0,06	0,06	0,01	0,02	0,31	0,03	0,01	0,35	0,12	0,85	2,98
k - Nº de Famílias Reassentadas		42,93	10,67	10,27	3,27	150,67	73,33	217,80	7.47	8,20	24,00	12,00	39,67	7,93	7,27	1,40	2,33	39,13	3,27	1,50	44,00	14.87	106,93	384,40
- Tempo de Enchimento para a Vazão do T	recho	4,63	1,00	1,21	0,33	14,83	5,79	22,00	1,47	2,00	5,89	2,53	9,36	1,65	1,73	0,55	0,74	10,10	0.71	0,23	11,68	2,53	27,59	58,95

Alternativas a serem analizadas e não incluidas na totalização.

Diante de tais fatos, tornou-se necessário, portanto, um estudo de alternativas com o objetivo de reduzir ou eliminar as quatro principais barragens, que como foi visto anteriormente, são responsáveis pela maioria dessas perdas, ou mesmo quaisquer outros dos reservatórios menores, substituindo-os por canais e/ou aquedutos.

2 1 5 - DESAPROPRIAÇÕES, PROBLEMAS SÓCIO-AMBIENTAIS E PRAZOS PARA IMPLANTAÇÃO

A evolução no grau de ocupação dos locais a serem inundados, se forem construídas as barragens previstas, leva a um problema sério de desapropriação e deslocamento de população

Primeiramente, deve-se levar em conta que, nos últimos anos, houve um aumento preponderante de obras projetadas e inviabilizadas ou postergadas por conta da mobilização da população afetada, o que leva à busca de soluções que minimizem o impacto ambiental e interferências com infra-estrutura básica existente e o atual ou potencial uso agrário e urbano.

A área total inundada, levando-se em conta apenas as cotas de nível máximo dos reservatórios do lote 1, é de aproximadamente 5 500 ha A área para a faixa de 200 m de preservação ambiental na margem dos lagos deveria atingir mais 1 000 ha, que também, deveriam ser desapropriados, restando apenas as terras imprestáveis das encostas. Apesar do custo da terra, quase nada representar, frente aos custos de investimentos das obras de maior porte, o custo social das desapropriações é altíssimo, podendo inclusive provocar medidas judiciais que inviabilizem a obra no curto prazo

2 2 - ANÁLISE DA CONCEPÇÃO TÉCNICA E CONDICIONANTES DO TRAÇADO DO ANTEPROJETO NO TRECHO 2 SALGADO - PIRANHAS - APODI

2 2 1 - O TRAÇADO DO ANTEPROJETO ALTERNATIVAS ESTUDADAS PARA O TRAÇADO GLOBAL DO TRECHO 2

No Volume 2 - Textos - Estudo de Alternativas de Traçado, para o trecho Rio Salgado - Rio Piranhas - Rio Apodi, consta textualmente que foram analisadas cinco soluções para derivação a partir do rio Salgado, e que se resumiram às alternativas localizadas, pois a análise da topografia indicava uma diretriz geral e única

As cinco alternativas estudadas consistiram em barrar o rio Salgado, à montante de Aurora, de forma a garantir a comunicação gravitária do rio Salgado com a barragem Tipi (NA do Anteprojeto = 303.64), considerada como ponto de passagem obrigatória de todos os possíveis traçados, que se iniciam na barragem Aurora

A alternativa de traçado escolhida para desenvolvimento a nível de Anteprojeto consistiu de um sistema misto de canais, com 135 km de comprimento, composto de túneis e "barragens de transposição de vale", que segundo os relatórios do Estudo de Alternativas e do Anteprojeto do DNOS, corresponderia à solução otimizada para a Transposição do total de 216 m³/s para Piranhas - Apodi, com a derivação de 77 m³/s para a bacia do Piranhas, à distância de 65 km do início, ou mais especificamente na barragem Bom Jesus IV, na Paraíba,

a partir de onde se prolongaria por mais 65 km, até atingir a bacia do rio Apodi nas proximidades de Major Sales no Rio Grande do Norte.

2 2 2 - CONDICIONANTES E COMENTÁRIOS SOBRE AS SOLUÇÕES DE AJUSTE GLOBAL E DE TRECHOS LOCALIZADOS DO TRAÇADO DO TRECHO 2

No que se refere à afirmação de que a diretriz geral dos trecho 2 é única, permitindo apenas variantes localizadas, com passagem obrigatória no vale do rio Tipi, conclui-se, por simples análise das condições topográficas, que estava correta, principalmente se forem considerados os condicionantes a seguir relacionados

Os condicionantes:

- 1º O "LOCAL ESTRATÉGICO" a região próxima à cidade de Bom Jesus PB se apresenta naturalmente como ponto estratégico, tanto em relação à cota como localização para Transposição do rio Salgado, no Ceará, para o rio Piranhas, na Paraíba e, ainda, permitir a continuidade de um canal em direção ao rio Apodi no Rio Grande do Norte, este, inicialmente, por 20 km se desenvolve na cumeada divisória CE/PB, para depois tomar a encosta leste até atingir o limite PB/RN, em cota que viabiliza a Transposição, para o Apodi, através de um túnel de 4,85 km
- 2º A DERIVAÇÃO GRAVITÁRIA DO RIO SALGADO A PARTIR DA BARRAGEM AURORA A viabilização da derivação gravitária pela construção da Barragem Aurora no rio Salgado, que deveria ter múltipla utilização como controle de cheias, regularização, geração de energia e, principalmente, a elevação do nível de captação de uma vazão de 216 m³/s, em aproximadamente 30 metros de altura.
- 3º O PORTE DAS OBRAS E A TRANSPOSIÇÃO DOS VALES: As dimensões das obras para a vazão de 216 m³/s, combinado com o relevo movimentado ao longo da encosta da margem direita do Salgado, modelado por elevados contrafortes e vales profundos, dificultando o desenvolvimento de um canal de grande porte, indicou obviamente como solução técnico-econômica mais viável a transposição sistemática dos acidentes, através de sucessivos túneis e grandes reservatórios formados por barramentos em locais estratégicos

Análise dos Condicionantes

Considerando-se as novas condições de projeto, onde não está mais prevista a construção da barragem de Aurora e a redução significativa da vazão máxima, originalmente prevista, (de 288 para 180 m³/s) conclui-se que dos três fatores que condicionaram o traçado do Anteprojeto, apenas o primeiro, relativo ao local propício à bifurcação Piranhas-Açu x Apodi, se mantém com importância fundamental para definição do novo traçado

Em razão da não inclusão da barragem Aurora com as funções inicialmente previstas, que condicionavam o ponto inicial do traçado do canal, surge a possibilidade de um leque de alternativas globais de traçado e captação, que devem contemplar tanto a variação do local, como a possibilidade de captação gravitária por simples barragem de derivação, ou através de pequena soleira associada à estação elevatória

A concepção e análise técnico-econômica das possíveis alternativas de ajuste do traçado global do 2º Trecho decorrentes da eliminação da Barragem Aurora foi detalhadamente estudada, sendo apresentada no item 3 2 1 deste relatório

Quanto à avaliação da importância do terceiro condicionante de travessia de vales através de inundação generalizada, apresenta-se, em itens a seguir, todos os dados básicos das barragens do projeto original e uma comparação com as soluções alternativas de travessia dos vales por canais e obras conduzindo vazões máximas bastante inferiores às previstas inicialmente. (216 m³/s reduzidos para 85 m³/s no trecho Salgado - Bom Jesus II)

2 2 3 - CONDIÇÕES OPERACIONAIS E PERDAS POR EVAPORAÇÃO NOS LAGOS DOS RESERVATÓRIOS DO TRECHO 2

O Anteprojeto prevê para o trecho 2, da mesma forma que para o trecho 1, um sistema adutor misto de canais de ligação e 19 barramentos com reservatórios para transposição dos talvegues

Para calcular as perdas nos espelhos d'água nos níveis operacionais, foram consideradas taxas de evaporação anual variando de 2 119 mm, e 2189 mm iguais a do Anteprojeto relativas respectivamente as estações Barbalha e São Gonçalo Aplicando-se esses valores sobre os espelhos d'água máximos dos reservatórios, obtêm-se o volume evaporado anual de 81,85 x 10⁶ m³ O Quadro 2.2 mostra os resultados obtidos

Neste trecho 2, as 19 barragens, de Aurora I até Poço, totalizam 6 361 ha de espelho d'água, implicando uma perda de 2,60 m³/s, com evaporação

2 2 4 - DESAPROPRIAÇÕES, PROBLEMAS SÓCIO-AMBIENTAIS E PRAZOS PARA ÎMPLANTAÇÃO

Os problemas sócio-ambientais são semelhantes, ou até mais sérios que no lote 1, tendose em consideração que a área total inundada, no trecho 2, é de aproximadamente 6 500 ha e atinge uma série de vales densamente povoados.

Levantamento realizado pela VBA junto ao DNOCS demonstra a magnitude dos futuros problemas relativos aos vales dos reservatórios Antas, Jitirana e Tipi

Foi executado, recentemente, no âmbito de um convênio entre o DNOCS e o Governo do Ceará a eletrificação rural dos vales anteriormente citados. Os dados levantados na ocasião do projeto indicam as seguintes densidades de consumidores, em cujas propriedades ainda existem várias famílias de moradores.

QUADRO 2.2

TRECHO 2: Aurora - Major Sales (Transposição Salgado - Piranhas / Apodi)
Dados e Parâmetros Básicos das Barragens de Travessia de Vales Conforme Ante-projeto

					a Jitirana/ Omax = 6		1				Qın	Sub- icial = 30 m	Trecho 2 i∜s, Qmax	= 85 m³/s			· " -		Qınıcıal :	Sub-Tro 15 m³/s	ocho 3 Qmax = (50 m³/s		
Descrică		AURORAI	2 ANTAS	3 TIP	4 PAU BRANCO	5 JITIRANA	SUB-TOTAL 1	6 UMBURANA	7 FELIZARDO	GAÇHIMBO I	GACHIMBO II	10 CACHIMBO III	11 BOM JESUS I	12 BOM JESUS II	13 BOM JESUS III	14 BOM JESUS IV	BUB-TOTAL I	15 BOM JESUS V	16 BOM JĘSUS VII	17 SANTA HELENA	18 SANTA HELENA #	19 POÇO	SUB TOTAL 3	TOTAL,
Área de Becla Hidrográfica (km 2)		4 50	721,00	65,00		55,62	891,92	16,71	14,07	35,20	9,33	3,79	2,40	4,61	1,00	3 42	90,53	7,45	2,13	5,00	1 60	30,00		1 028,6
ves de Bacie Hidráulica	b Ares (he)	102,00	1 900,00	1 800 00	168,00	1 050,00	5 020,00	150 00	172,00	300,00	198,00	32 00	28 00	104 00	15,00	117 00	1 114,00	99 00	21 00	57,00	19 00	31 00	227,00	6 361,0
	c Cota (m)	305,85	305,68	304,21	304,09	303,85		300,90	299,92	299,86	299,80	299,41	299,18	299,12	299,06	299,00		295,94	298,52	298,29	297,64	294,86	_,	<u> </u>
Precipitação Média Anual (mm)		850,00	825,00	850,00	870,00	670,00	<u>-</u>	870,00	880,00	860,00	680,00	550,00	850,00	850,00	850,00	850,90		850,00	850,00	830,00	830,00	710,00		ļ
Evaporação Média Anual Reservatório (mm)		2 119,00	2 119,00	2 119,00	2 119,00	2 119,00		2 189,00	2 189,00	2 189,00	2 189,00	2 189,00	2 189,00	2 189,00	2 189,00	2 189,00		2 189,00	2 189,00	2 189 00	2 189,00	2 189,00		
Akura Māxima (m) Ref. Terreno Naturai		28 00	35 00	34,00	21,00	29,00		22 00	17,00	17,00	17,00	12 00	12 00	14,00	12 00	18 00		17 00	11,00	11 00	10 00	12 00	-	<u> </u>
Comprimento de Criste (m)		840,00	560,00	1 605,00	450,00	1 790,00		490,00	560,00	940,00	460,00	330,00	355,00	1 005,00	320,00	720,00		380,00	280 00	215,00	225,00	250,00		
Volume Acumulado 10º m²		8 750,00	120 000,00	194 000,00	12 400,00	114 000,00	449 150,00	11 300,00	9 050,00	17 800,00	10 200,00	1 120,00	1 000,00	3 900,00	600,00	7 000,00	61 970,00	5 200,00	740 00	2 450,00	570,00	840,00	9 800,00	520 920,0
Volume anual Evaporado 10º (mº/ano)		1 294,38	24 586,00	22 842,00	2 098,32	13 114,50	63 935,20	1 978,50	2 285,88	3 987 00	2 604,84	425,28	374,92	1 392 56	200,85	1 586,83	14 816,46	1 325,61	281 19	774 63	258,21	458 49	3 098,13	81 849,7
Vatão Continua Evaporada (m²/s)		0.04	0,78	0,72	0,07	0 42	2,03	0,06	0 07	0 13	80 0	0,01	0,01	0 04	0.01	0 05	0,47	0.04	0.01	0 02	0,01	0 01	0,10	2.64
Nº de Families Reassentades		6,80	126,67	120,00	11,20	70,00	334,67	10,00	11,47	20,00	13,07	2,13	1,87	6 93	1,00	7,80	74,27	6,60	1,40	3 80	1,27	2 07	15,13	424,0
Tempo de Enchimento pera a Vazão do Trecho		3,38	46,30	74,85	4,78	43,98	173,28	4,36	3,49	6 87	3,94	0,43	0,39	1 50	0 23	2,70	23,91	4,01	0 57	1 89	0,44	0 65	7,56	204,7

And Post Part and the

70

- Vale dos rios Cuncas e Antas
 - densidade de 2,9 consumidores/km de proprietários rurais, pelo levantamento entre as localidades de Diamante e Sítio Grosso,

Vale do Riacho Jitirana

- densidade de 4,0 consumidores/km de propriedades rurais, pelo levantamento entre Sta Vitória e Soledade,

Vale do Rio Tipi

densidade de 3,8 consumidores/km de propriedades rurais, pelo levantamento entre Tipi e Malhada Funda

Por outro lado, os impactos ambientais provocados ao inundar-se terras de boa qualidade, e em alguns casos as pequenas bacias submergem praticamente por completo, são fatores politicamente maléficos à aceitação do projeto pela sociedade civil organizada

Esses fatores levarão, certamente, a um debate acalorado, tendo de um lado os defensores do projeto e, de outro, entidades locais e ambientais dispostas a combatê-lo

Experiências anteriores, e como exemplo pode-se citar o caso do açude Castanhão, no Ceará, mostrou que esses fatores podem levar a adiamentos indefinidos para o início da obra, prejudicando todos os prazos possíveis de prever

2 3 - CONDICIONANTES E METODOLOGIA PARA O AJUSTE DO TRAÇADO ÀS CONDIÇÕES ATUAIS DO PROJETO

Logo no início dos trabalhos, na primeira reunião com a SRH e a coordenação do grupo especial do Ministério da Integração Regional responsável pelo detalhamento do Projeto Básico da Transposição, foi discutido que diante de curto prazo para elaboração do projeto, o objetivo principal do trabalho, a ser desenvolvido pela VBA CONSULTORES, seria a liberação parcial progressiva de trechos do traçado ajustado para que fosse possível se dar início, com garantia de continuidade, aos serviços de topografia e geotecnia que deveriam ser executados no prazo máximo de 60 dias para ± 260 km de canal

Diante de tal situação em que os únicos dados básicos disponíveis eram os do Anteprojeto e ainda não estavam definidas as vazões máximas finais de projeto, foi decidido que para se ganhar tempo, os estudos de alternativas de traçado, deveriam se basear nos dados e parâmetros do Anteprojeto e os custos serem pré-estimados para uma certa gama de vazões (25, 50, 75, 100 e 150) Desta forma, na avaliação de cada alternativa de traçado localizado, se teria condição, de tomar decisões com base numa análise de sensibilidade da variação dos parâmetros e dados básicos que não estavam totalmente definidos, como pode-se citar as vazões definitivos dos trechos e a geotecnia para classificação dos materiais escavados

Também foi decidido conjuntamente, na análise de custos das alternativas de travessias dos vales de Barragens x Canais de Encostas e/ou Aquedutos, que em razão dos grandes problemas sociais decorrentes das alternativas de barragens, elas seriam mantidas, se somente,

o valor de seus custos atualizados fossem superior a 110 % do valor atual dos custos dos canais alternativos

Com base nestas decisões, os trabalhos foram iniciados, tendo-se liberados logo na primeira semana a locação do trecho da captação do rio São Francisco até a segunda elevatória denominada Terra Nova, com a pendência, apenas, de se aprofundar as análises de exclusão da barragem Barro Vermelho

Tal processo de liberação para campo teve continuidade até o final do Trecho 1 São Francisco - Jati, quando já estavam adiantados em andamentos os serviços de geotecnia e os estudos de disponibilidade hídricas, que forneceram as informações básicas para a coordenação geral do Projeto no MIR, decidir quais as vazões máximas de fim de plano, que deveriam ser fornecidas a cada estado, pois as vazões iniciais já haviam sido definidas pelo MIR

Para melhor entendimento de como se desenvolve o processo iterativo de ajuste do projeto, apresenta-se nos itens a seguir a descrição dos dados básicos disponíveis do Anteprojeto e os condicionantes de sua utilização

2 3 1 - ELEMENTOS CARTOGRÁFICOS E TOPOGRÁFICOS DISPONÍVEIS E RECUPERAÇÃO DOS DADOS DO TRAÇADO ORIGINAL

2 3 1 1 - Elementos do Traçado Original

Como elementos básicos para reestudo do traçado foram utilizados os seguintes dados do Anteprojeto

- . Desenhos em planta (1 20 000) e perfil (H = 1·20.000 e V = 1 1 000), obtidos a partir do traçado na faixa de levantamento planialtimétrico na escala 1 10.000 com curvas de nível a cada 2 m
- . Planilhas topográficas de locação dos PI's e dados de curvas, constantes em coordenadas UTM, nos volumes dos Anteprojetos dos Canais e complementadas com informações dos volumes das memórias justificativas, onde constava a correlação das coordenadas topográficas x coordenadas UTM

Deve-se observar, que em razão da qualidade das cópias disponíveis, tanto dos desenhos, como das planilhas, foi necessário um enorme esforço de trabalho para recuperar, quando possível na íntegra, os dados do traçado original, de tal forma, que quando não houvesse justificativa técnico-econômica para mudança do traçado, se mantivesse os mesmos elementos da locação original Consequentemente, se manteria o máximo possível, os estaqueamentos originais de locação de outras obras, como estações de bombeamento, aquedutos, túneis e obras viárias e de drenagem que deveriam ser mantidas e detalhadas nível de projeto básico

2 3 1 2 - Elementos do Traçado Ajustados

O objetivo mais imediato dos estudos elaborados pela VBA consistiu na liberação dos elementos do traçado ajustado para locação em campo, em razão do que, imediatamente após a recuperação dos elementos do traçado original na planta 1/10 000, se procedia ao lançamento em planta e levantamento do perfil de todas as alternativas possíveis de travessia de talvegues com canais e ou aquedutos, em substituição às barragens do Anteprojeto

Os traçados alternativos foram sempre lançados, considerando-se. aproximadamente, a declividade e 0,10 m/km que foi adotada, praticamente, em todos os trechos do Anteprojeto

Após se analisar tecnicamente, em plantas e perfil a viabilidade dos traçados alternativos, lançou-se, trecho a trecho, todas seções tipos de canais ou aquedutos que paralelamente estavam sendo ajustadas, com base nos previstos no Anteprojeto

Com base em seleção técnico-econômica, se adotou para cada trecho em estudo, a melhor solução técnico-econômica para fins de comparação final com o custo da barragem possível de ser subtendida ou reduzida

Os elementos técnicos básicos liberados para locação do traçado ajustado com base nas alternativas selecionadas estão consolidadas em volume separado, denominado Elementos Topográficos do Traçado Ajustado, sendo nos itens a seguir apresentado os parâmetros básicos e justificativa da escolha das alternativas

2 3 2 - ANÁLISE DOS PREÇOS UNITÁRIOS E CUSTOS GLOBAIS DE OBRAS UTILIZADOS COMO PARÂMETROS

Para definição dos custos das obras do ajuste do traçado original às condições atuais do projeto, foi feita uma análise dos preços a considerar no estudo das várias alternativas de traçado do Projeto Básico

Devido o período de tempo decorrido entre o traçado original proposto e a fase atual de ajuste, fez-se necessário uma pesquisa dos preços a utilizar, em função da flutuação de custos de diversos insumos das composições unitárias de serviços, mesmo que estes estivessem referenciados a uma moeda que goza de significativa estabilidade, no caso o dólar americano

Os preços comparados foram os apresentados nos seguintes documentos

- Estudo de Alternativas de Traçados DNOS preços de janeiro/82,
- . Anteprojeto da Transposição DNOS preços de novembro/83,
- . Tabela de Preços do DNOCS preços de julho/94,
- . Tabela de Preços da SRH-CE preços de agosto/94,
- . Tabela de Preços do CODEVASF preços de setembro/94

Os preços relativos aos diversos itens de maior significância na análise das alternativas, são apresentados no Quadro 2 3, referentes as fontes supracitadas, além do preço final adotado para ajuste do traçado do Projeto Básico

Do Quadro 2 3 pode-se verificar que ocorreram variações positivas e negativas nos custos dos serviços entre o Estudo de Alternativas (jan/82), e o Anteprojeto (nov/83), e entre este último e os preços atuais constantes nas tabelas de órgãos públicos como DNOCS, CODEVASE e SRH-CE.

Entretanto, conforme se observa na coluna relativa ao valor adotado para o ajuste atual, procurou-se manter os preços relativos ao Anteprojeto (nov/83) pelas seguintes razões

- . Os preços utilizados no Anteprojeto apresentam pequena variação quando comparados aos da SRH-CE (Ago/94) e CODEVASF (Set/94),
- . As tomadas de decisão quanto as alterações de traçado ficam associadas a custos referenciados a uma mesma data-base, reduzindo-se as oscilações acidentais na comparação de custos de obras diferentes como o exemplo das barragens que foram mantidas com custo do Anteprojeto nos estudos de alternativas,
- . Permitem verificar a alteração global de custos do Projeto Básico em relação ao traçado original do Anteprojeto,
- O preço de maior significância na análise das alternativas e que sofreu acentuado acréscimo ao longo do período, foi o custo de energia, cuja abordagem será objeto de item específico neste relatório

Não obstante, embora os preços de novembro/83 sejam citados nos textos do relatório do Anteprojeto, como tendo sido os adotados na composição dos custos das obras, verificouse que em alguns casos, quando da composição das planilhas de custos destas, alguns custos foram alterados ou desagregados, tomando-se como exemplo o caso do concreto estrutural, no qual se desagregou o preço do cimento

Estas observações foram levadas em consideração na composição das planilhas de custos das obras deste estudo de ajuste de traçado atual, levando-se em conta, principalmente, a tipologia da obra em questão Entretanto a média dos custos se manteve a mesma do Anteprojeto

Exemplificando-se a observação do parâmetro acima, veja-se o caso das seções de canais tipo STAR e STIR (item 2 3 3 2) Os custos unitários dos serviços de escavação, carga e transporte de materiais para DMT = 500 m de acordo com os valores do Anteprojeto e adotados no ajuste atual são

- . Material de la Categoria US\$ 1,65/m³,
- . Material de 2ª Categoria. US\$ 2,18/m³,
- . Material de 3ª Categoria US\$ 7,96/m³

QUADRO 2.3
Preços Utilizados (do Estudo de Alternativas ao Projeto Básico)

			Estudos de Alternativas	Antep	rojeto	DNO	ocs	SRH	- CE	CODEV	ASF	Valores Adotados
Item	Descrição	Unidade	Jan/82 US\$	Nov/83 US\$	Nov/83 / Jan/82 (%)	Ju l/94 R \$	Jul/94 / Nov/83 (%)	Ago/94 R\$	Ago/94 / Nov/83 (%)	Set/94 R\$		no Ajuste Atual
<u> </u>	CANAIS	 		<u> </u>								
11	Concreto estrutural, com fck > 135 kg/cm2	m3	110,23	114,75	+ 4 10	114,38	- 032	105,38	- 8 17			114,75
1 2	Escavação carga e transporte de materiais para DMT = 500											
121	1ª categoria	m3	1,55	1 65		2,20	+ 33 33	1,51	- 8,48			1,65
1 2 2	2ª categoria	m3	2,55	2,18	14.51	3,29	+ 50,92	2,21				2,18
123	3ª categoria	m3	8,63	7,96		9 89		10,85				7.96
13	Momento extraordinário de transporte	km x m3	0,554	0,35	36,82	0.80	+ 128,57	0,33				0,35
14	Compactação de aterros a 100% PN	m3	0,85	0 73	- 14,12	0,83	+ 13,70	0.57	21.92	0,76		0.73
1 5	Formas para paredes dos canais em rocha	m2	12,23	11,27	7 85	13 91		10 74				11 27
16	Drenagens e interferências ao longo dos canais	m	150 00									150 00
17	Barragem de terral com nucleo impermeável											——————————————————————————————————————
Į.	inclusive vertedores e descarga de fundo	m3	7,00									7.00
18	Desapropriações, limpeza do reservatório remanejamento de pequenas e médias interferências											
181	nos vales principais	ha	1 390.00									4 200 05
182	nos demais vales	ha	700.00	i								1 390,00
19	Desapropriação e relocação de pequenos	lia	700,00									700 00
	lugarejos	hab	2 180,00	' 1	- 1	'		2 222 22		! }		1
1 10	Custo da água evaporada ou de enchimento	m3/metro bomba	0 078 x 10 ^-3					3 000 00	+ 100 00			3 000 00
1 11	Energia elétrica consumida nos bombeamentos	US\$/MWh	14,00									
1 12	Linhas de transmissão de 230 kV	km	120 000,00									28,79
1 13	Interferências com rodovias asfaltadas	KITI	120 000,00									120 000,00
1 13 1	rodovias federais - estrada	km	150 000.00									
1 13 1	- ponte											150 000,00
1 13 2	rodoyias estaduais - estrada	m ton	6 150,00									6 150 00
1 13 2	- ponte	km	75 000,00									75 000,00
3	TUNEIS	m	5 000,00									5 000,00
21	Escavação carga e transporte (DMT=3 km)											
22	Concreto projetado	m3	37,78	37,57	0 56							37,56
	Concreto p/revestimento, inclusive espalhamento	m3	244 54	244,53								244,53
24		m3	105,38	105,38				105,46	+ 0,08			97,98
	Tela (Q 91)	m2	4,35	3,02	30,57							3,02
25	Tirantes (15 t)	m_	33,87	152 42	+ 350,01					14,26		152,42
26	Formas	m2	14 00	14,00		13 91	0 64	10,75	- 23,21	13 00		14,00
31	AQUEDUTOS Concretos (ck > 150 kgf/cm2, inclusive											
31		1				_ 1	- 1	}	1	ł		
3	espaihamento	m3	96,20	97,98	+ 185	99,44		94,50	3 55			114 75
	Aço CA-50	kg	1,21	1,21		1,38	+ 14,05	1,18	- 2,48	1 17		1,21
3 3	Formas	m2	8,27		I		1			13,01		
3.4	Escoramento	m/Aqueduto	750,00							6 33 / m3		
3.5	Juntas	m	10,21	1								
	SIFŌES							1				
41	Estrutura metálica tubular com aço estrutural ASTM											
	2836 (incluindo fabricação e instalação)	kg	4,00									T .
42	Concreto fck > 150 kgf/cm2	m3	96,20							78,47		
	Aço CA-50	kg	1,21							1,17		-
44	Formas	_m2	8,27						 	13 01		
	Aço CP-190 (inclusive ancoragens)	kg	3,00									1
46	Transporte de peças pré-moldadas de até 100 t											
	e assentamento	Peça	7 000,00					 +				
	Canteiro de fabricação (sifões em concreto protendido)	un	1 000 000 00									·
48	Juntas especiais	m	300,00					 +				

Os volumes calculados para composição das planilhas iniciais de custos das seções STAR e STIR, foram aplicados sobre um custo médio de escavação ponderado em função das percentagens esperadas de ocorrências de materiais nas diferentes categorias Assim, na seção tipo STAR foi considerado 40% de escavação em 1ª categoria e 30% nas demais categorias Na seção tipo STIR a percentagem de 40% foi alocada para material de 3ª categoria invertendo-se a ordem anterior

Logo, os custos ponderados de escavação inicialmente considerados foram

- . Seção STAR $0.40 \times US$ $1.65 + 0.30 \times US$ $2.18 + 0.30 \times US$ 7.96 = US $3.70/m^3$
- . Seção STIR $0.30 \times US$ $1.65 + 0.30 \times US$ $2.18 + 0.40 \times US$ 7.96 = US $4.33/m^3$

As percentagens acima consideradas tiveram por base as primeiras informações constantes no Relatório do Anteprojeto dos Canais (Quadro 1 1 do volume 3 0, Trecho São Francisco-Jati)

Posteriormente, com os resultados apresentados pelas sondagens geotécnicas efetuadas ao longo dos canais, verificou-se que estas percentagens não correspondiam à realidade da situação, pois o topo rochoso característico da ocorrência de material de 3ª categoria se encontrava em média, no máximo a 2,5 m de profundidade

Assim sendo, foram recalculados os volumes de escavação dos canais em função das cotas de projeto, considerando-se material de 3ª categoria abaixo de 2,5 m, e 50% de ocorrência nas demais categorias acima desta profundidade, sendo então aplicados os respectivos custos unitários na composição das planilhas de custos dos canais

Com relação ao custo de obras singulares como barragens, túneis, aquedutos, estações elevatórias e sifões, foram considerados os mesmos preços das respectivas planilhas de custos unitários apresentados nos volumes do Anteprojeto, tendo sido elaboradas curvas de custos para as mesmas conforme se apresenta posteriormente no item 2 3 4

Entretanto, no caso nas barragens e estações elevatórias, o custo da água evaporada, de enchimento e bombeada para o Estudo de Alternativas do Traçado Atual, foi calculado com base no custo atualizado da energia em razão das considerações que são apresentadas no item 2 3 5 deste relatório

2 3 3 - SEÇÕES TIPO E PARÂMETROS DE CUSTOS DOS CANAIS

2 3 3 1 - Seções do Anteprojeto

Com a finalidade de atender a todos os condicionamentos hidráulicos, construtivos, geotécnicos e operacionais foram definidos conceitualmente no Anteprojeto as seguintes seções tipo de canais

- . STAR Seção em talude abatido revestida
- . STANR Seção em talude abatido não revestida

- . STAFR Seção em talude abatido com fundo revestido
- . STIR Seção em talude ingreme revestida
- . STINR Seção em talude ingreme não revestida
- . STIFR Seção em talude ingreme com fundo revestido

Estas seções foram dimensionadas para vazões de 77 a 288 m³/s com taludes de corte e aterro variando em função da geotecnia e das alturas de corte ou aterro de cada trecho, conforme está apresentado nos volumes dos Anteprojetos dos canais e nas memórias justificativas, onde estão indicados trecho a trecho, tendo as características geométricas dos canais, como também as profundidades médias do topo rochoso considerados no Anteprojeto

2 3 3 2 - Seções dos Canais para as Condições Atuais

Analisando-se os tipos básicos de seções adotadas no Anteprojeto, pode-se concluir que de forma geral, elas poderiam ser utilizadas para estimativa dos custos das alternativas da atual fase de ajuste do traçado, bastando para isto o redimensionamento das seções de forma a atender às novas condições de vazões de projeto

Considerando-se, portanto, o modelo das seções do Anteprojeto, procedeu-se um dimensionamento otimizado para as novas seções, observando-se tanto os aspectos hidráulicos quanto os construtivos

No Quadro 2 4 são apresentadas os tipos de seções dimensionadas para a fase atual, em função do tipo de revestimento e variações de condições geotécnicas e alturas de corte ou aterro

Foram observados os mesmos critérios adotados no Anteprojeto para definição dos taludes em função das características geotécnicas dos trechos e alturas de corte ou aterro acima da pista de operação e manutenção

Entre os critérios por condição de facilidade construtiva e de garantia da estabilidade das seções em corte, previu-se que a cada 10 m de altura de corte seria construída uma bermaplataforma de operação e manutenção de 4 m de largura, com fluxo de tráfego em sentido unico, facilitando assim também o aspecto operacional construtivo

As características geométricas, hidráulicas e custos unitarios das seções do Quadro 2 4 para as diversas vazões de Projeto são apresentadas nos Quadros 2 1 1 a 2 1 30 do Anexo 2 1 - Estimativa de Custos das Seções Tipo de Canais

Convém relembrar as observações apresentadas, no item 2 3 2 relativas a profundidade de 2,5 m à partir da qual considerou-se escavação em material de 3ª categoria, na quantificação dos volumes para efeito de orçamento das seções dos canais de acordo com o tipo e vazão de projeto

QUADRO 2.4 SEÇÕES TIPOS DE CANAIS OTIMIZADAS PARA FASE DE AJUSTE DO TRAÇADO

TIPO	TALUDE DO CANAL	TALUDE EXT	TERNO (H V)	Al	LTURAS	DE AT	ERRO	(m)		-	LTURA	S DE C	ORTE (r	n)	
	(H V)	ATERRO	CORTE	1	5	10	15	20	1	5	10	15	20	30	40
	15 1	20 1		X	×	X	X	×							
	15 1		10 1	1	1	1	i	l	х	X	×] x	x		ĺ
STAR	15 1		15 1		ĺ	ĺ		[X	×	[x	X	Х	[[
1	20 1	20 1		Х	X	X	X	X					F .		
]	20 1		101	1	l	1	j	!	X	X	X) x	Х		
	2,0 1		1,5 1	<u>.</u>	<u> </u>	i	l	1	X	X	X	L x	X		L
	15 1	20 1		X	X	X	X	X		Γ			Γ.		Γ
]	15 1		101		l	İ		ļ	X	X) x	X	X	ļ	
STANR	15 1		15 1					L	X	X	Х	_ x	_x	l	L
i i	20 1	20 1		X	X	X	x_	x							
j j	20 1		101]]	J	Х	X	X	X	X	J	ļ
	20 1		15 1						X	_ × _	X	L X	x		<u> </u>
	0 50 1 (1 2)		0 50 (1 2)					_	Х	×	×	X	X		
) j	0 50 1 (1 2)		1 00 (1 1)			<u> </u>	<u> </u>	<u> </u>		<u> </u>	L		l	X	X
!	0 33 1 (1 3)		0 33 (1 3)				i	_	Х	×	_ x	_			
	0 33 1 (1 3)		0 50 (1 2)					1			İ	X	Х		l
STIR	0,33 1 (13)		1,00 (1 1)		L	<u></u>		<u> </u>				L	<u> </u>	X	X
!!	0 25 1 (1 4)		0 25 (1 4)	1	!	1	1	ļ	Х	X	x	ļ	•	ļ	Į
i l	0 25 1 (1 4)		0 50 (1 2)	l l	i			1		ļ.	i i	×	Х	i	ĺ
i i	0,25 1 (1 4)	. <u> </u>	1 00 (1 1)	<u> </u>					L	<u> </u>		L	L	X	X
, ,	0 20 1 (1 5)		0 20 (1 5)	1	1	l	ļ	ļ	Х	X	Х	X	X	ļ	Į .
1 1	0 20 1 (1 5)		0 25 (1 4)	1			ĺ	•					İ	Х	1
	0 20 1 (1 5)		0 33 (1 3)		<u> </u>					<u> </u>					X
j j	0 25 1 (1 4)		0 25 (1 4)	Ι,]]	X	×	X)	1		1
	0 25 1 (1 4)		0 50 (1 2)		l	l	i	ļ		1	1	X	Х	Į.	Į.
STINR	0 25 1 (1 4)		1 00 (1 1)	ļ	<u> </u>			L				<u> </u>		X	L×.
))	0 20 1 (1 5)		0 20 (1 5)	1 .		ļ	ļ)	×	×	X	X	Χ̈́	}	ļ
	0 20 1 (1 5)		0 25 (1 4)			1	l	l]	1			Х	l
	0 20 1 (1 5)		0 33 (1 3)	<u> </u>		<u> </u>					<u> </u>				X
]]	0,33 1 (13)		0 33 (1 3)] .]]	X	X	X]		ļ	
l l	0 33 1 (1 3)		0 50 (1 2)			1	1	l		l		X	×	1	1
STIFR	0 33 1 (1 3)		1,00 (1 1)	ļ		<u> </u>		!		L	 			X	×
j j	0 20 1 (1 5)		0 20 (1 5)	j .	l	J	J	,	X	×	×) ×	Х	J	J
	0 20 1 (1 5)		0 25 (1 4)			1		l		l		· ·		Х	1
	0 20 1 (1 5)		0 33 (1 3)	<u> </u>	L	<u> </u>				L	L	L		L	X

As Figuras 2 la e 2 lb apresentam as curvas de custo dos canais para as seções tipo STAR e STIR mais frequentes nos trechos dos canais, sendo as demais mostradas no Anexo 2 l

2 3 4 - DIMENSIONAMENTO E CURVAS DE CUSTOS DE OBRAS ESPECIAIS

2 3 4 1 - Aquedutos

As seções dos aquedutos ou pontes canais para transposição de talvegues do estudo de alternativas do traçado, foram dimensionados para as novas vazões de projeto, buscando-se otimizá-las do ponto de vista hidráulico e estrutural

As seções foram preliminarmente calculadas para alturas de lâmina d'água h iguais a 0,5 e 0,75 da largura de fundo F e para declividades de 0,0001, 0,00025; 0,0005 e 0,00075 m/m, sendo posteriormente adotada a declividade de 0,0005 m/m como representativa das situações do projeto para efeito de quantificação e orçamento

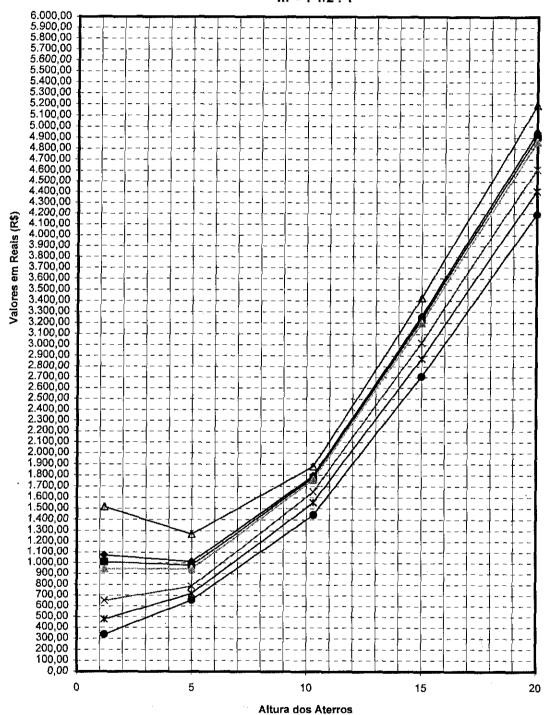
As seções foram, pré-dimensionadas estruturalmente considerando-se o funcionamento como viga T nas passarelas sobre as paredes laterais da ponte canal. Neste caso, observou-se que a seção com $h=0.75\,$ F tem melhor desempenho estrutural, sendo esta a seção adotada para o estudo de alternativas

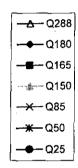
O modelo geométrico e os custos unitários foram iguais aos empregados para o Anteprojeto do aqueduto de Salgueiro, que consiste no Volume 11 do Anteprojeto - Trecho São Francisco - Jati

A Figura 2 2 apresenta a curva de custos dos aquedutos em função da vazão e altura dos pilares, para 1 única seção de ponte canal

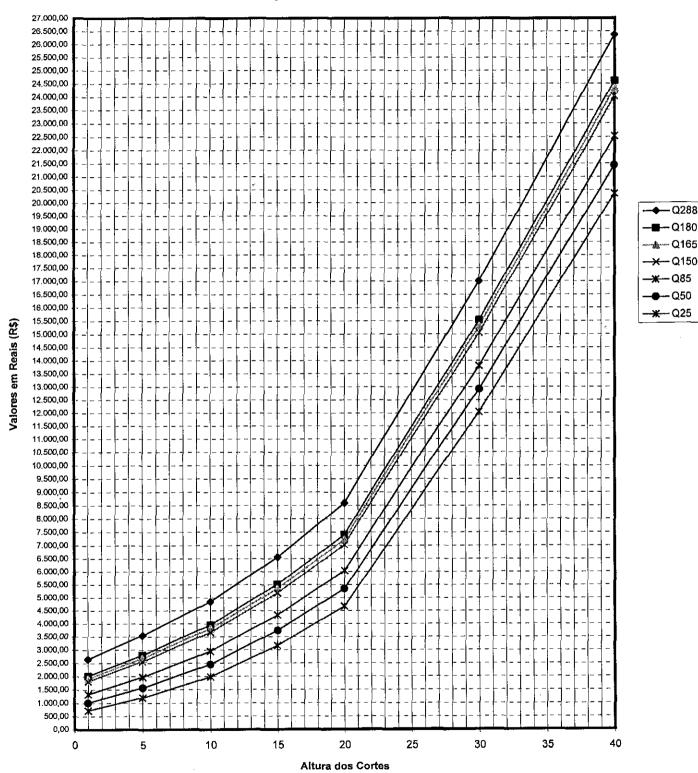
Os Quadros A2.2 1 a A2 2 4 no Anexo 2 2 apresentam o dimensionamento hidráulico e estrutural das pontes canais, bem como os custos unitários das seções para alturas de pilares de 5, 10, 20 e 30 m

2 3 4 2 - Sifões

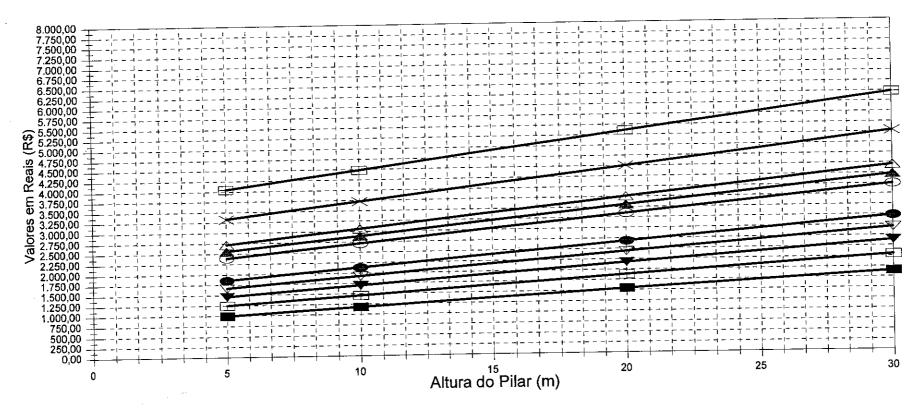

O modelo utilizado para servir de base ao dimensionamento, quantificação e custos unitários para orçamento dos sifões par as novas vazões, foi o do sifão do Rio do Peixe, apresentado no Volume 3 0 - Anteprojeto dos Canais e Sifão do Trecho Rio Salgado - Rio Piranhas - Rio Apodi


Foram dimensionadas seções para pressões internas de serviço de 12 m c a e 20 m c a para situações em campo de sifão totalmente enterrado e sifão semi enterrado, todas referenciadas a declividade de 0,0005 m/m

As Figuras 2 3a e 2 3b mostram as curvas de custo dos sifões em função da vazão, respectivamente para as pressões de 12 m c.a. e 20 m c a.


Figura 2.1a Seção STAR - Aterro m ≈ 1 1/2 : 1

VIDACONSULTORES


Figura 2.1b Seção STIR - Corte m = 1/2 : 1

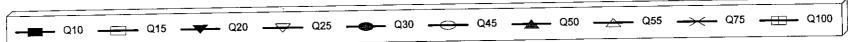


Figura 2.2

Transposição do São Francisco

Ponte Canal (h=0,75)

82

Figura 2.3a - Curva de Custos do Sifão - Pressão 12 m.c.a

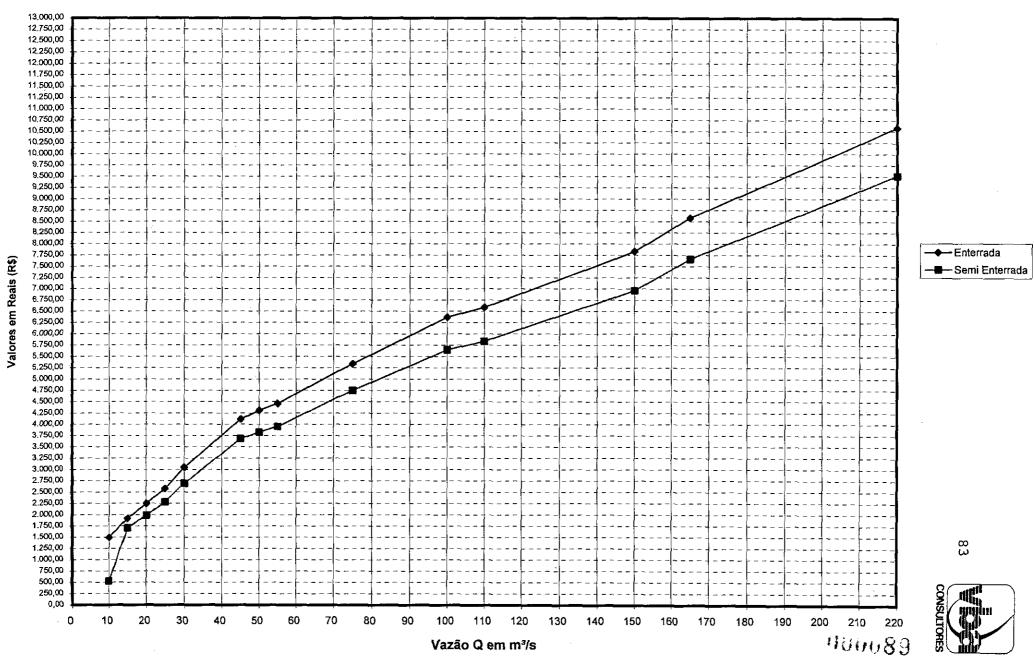
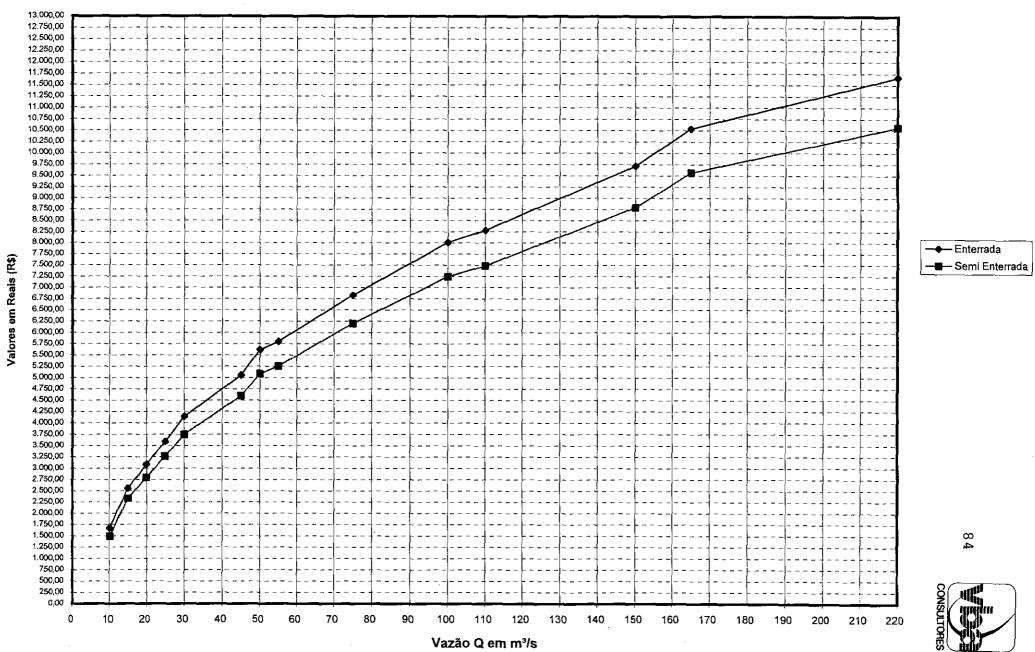



Figura 2.3b - Curva de Custos do Sifão - Pressão 20 m.c.a

000000

Os Quadros A2.2.5 a A2.2.6 do Anexo 2.2 apresentam o dimensionamento hidráulico, estrutural e planilha de custos dos sifões calculados.

2.3.4.3 - Túneis

O dimensionamento hidráulico e a quantificação para os túneis de acordo com as novas vazões de projeto, foi feito com base no modelo do túnel Milagres-Jati, apresentado no Volume 4.0 - Anteprojeto do Túnel - Trecho Rio São Francisco - Jati.

Os custos unitários utilizados para orçamento das novas seções foram também os do Anteprojeto supracitado.

A Figura 2.4 apresenta a curva de custo dos túneis em função da vazão de Projeto.

As seções foram calculadas em função dos seguintes parâmetros de Projeto:

- . Seção: Tipo Ferradura
- . Lâmina d'água ≈ 0,82 · altura da seção
- . Largura da base ≈ altura total da seção
- . Declividade: 0,0005 m/m, considerada representativa dos trechos das alternativas estudadas.
- . Coeficiente de Manning: 0,014

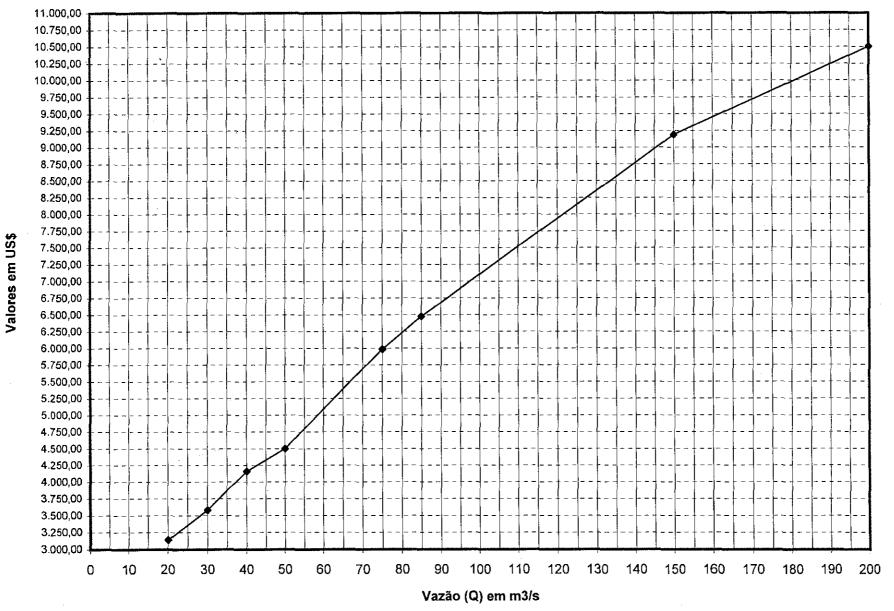
2.3.5 - Custos Unitários de Energia

Conforme descrito nos itens anteriores, os custos de energia tiveram significativa elevação desde a época de elaboração do Anteprojeto da Transposição pelo DNOS, cujos preços são referenciados a novembro/83. O custo da energia elétrica consumida nos bombeamentos então considerado foi de US\$ 14,00 / MW · h.

Entretanto, devido a relevante importância deste custo nos estudos de alternativas da atual fase de ajuste do traçado, foi necessário fazer uma atualização do mesmo em virtude dos valores correntes das tarifas cobradas pelo Sistema da CHESF, que será o fornecedor de energia para as estações elevatórias e demais usos do Projeto de Transposição.

As tarifas empregadas na análise foram as constantes na tabela do Sistema Hora-Sazonal, Tarifa Azul, subgrupo A1 industrial, nível de tensão em 230 KV, com validade a partir de 01 de junho de 1994, de acordo com o enquadramento estabelecido para o Projeto da Transposição, cujos valores são:

Tarifa de Demanda


Ponta: TDp = R\$7,24 / KW

For ade Ponta: TDfp = R 1,51 / KW

Ponta: $TCup = R$ 36,04 / MW \cdot h$

Úmida Fora de Ponta: $TCufp = R$24,78 / MW \cdot h$

Figura 2.4 Curva de Custo de Túneis

8

 α aaaii92

Tarifa de Consumo

Ponta: $TCsp = R\$ 41,20 / MW \cdot h$

Seca Fora

For ade Ponta: $TCsfp = R$29,15 / MW \cdot h$

Obviamente, em função da variação dos valores de tarifas empregadas nas condições acima, tornou-se necessário o cálculo de uma tarifa de energia ponderada que foi adotada nos estudos de alternativas a partir de premissas supostas para operação do sistema.

Estas premissas básicas foram as seguintes:

- · Vazão Média Bombeada = 75% da vazão máxima;
- · Volume Anual Bombeado = 75% do volume máximo bombeável:
- Estação úmida definida como 5 meses (dez/abr), correspondendo a 41,67% do ano;
- Estação seca para os 7 meses restantes, correspondendo a 58,33% do ano;
- Período de ponta de acordo com a definição da CHESF, correspondendo às 3 horas de maior consumo entre 17: e 22:00 horas, equivalendo a 12,5% do dia;
- Período fora de ponta definido como as 21 horas restantes do dia ou 87,5%.

Desta forma, o valor ponderado da tarifa de consumo assim obtida:

- $TC_{imida} = 0.125 \cdot 36.04 + 0.875 \cdot 24.78 = R\$ 26.19 / MW \cdot h$
- $TC_{seca} = 0.125 \cdot 41.20 + 0.875 \cdot 29.15 = R\$ 30.66 / MW \cdot h$
- $TC_{ponderada} = 0,4167 \cdot 29,19 + 0,5833 \cdot 30,66 = R$ 28,79 / MW \cdot h$

Observa-se assim que o custo de consumo de energia nos bombeamentos sofreu elevação superior a 100% desde a elaboração do Anteprojeto, considerando-se na data a equivalência do Real ao Dólar Americano.

Para se obter o custo médio anual de energia para elevar 1,0 m³/s a uma altura manométrica de 1 m.c.a., foi feito o seguinte cálculo de acordo com dados constantes do Relatório do Anteprojeto e as premissas básicas supostas:

· O número de horas de bombeamento:

NHB =
$$0.75 \cdot 24 \cdot 365 = 6570$$
 hs

· Potência de Bombeamento:

Pot (KW) =
$$\frac{1.000 \cdot Q \cdot H_{man}}{7 \cdot \eta_b \cdot \eta_m} \times 0,736$$

Logo, Pot (KW) =
$$\frac{1000 \cdot 1 \cdot 1}{75 \cdot 0.86 \cdot 0.97} \cdot 0.736 = 11,7637 \text{ KW}$$

Onde:
$$Q = Vazão 1 m^3/s$$
;

H_{man} = altura manométrica 1 m;

- η_b e η_m = rendimentos dos conjuntos de bombas e motores admitidos como 0,86 e 0,97 respectivamente segundo o relatório das alternativas no Anteprojeto;
- Volume Anual Bombeado:

$$V = 1 \text{ m}^3/\text{s} \cdot 6.570 \text{ hs} \cdot 3.600 \text{ s} = 23.652.000 \text{ m}^3$$

Custo Anual de Consumo:

$$CC = NHB \cdot \frac{Pot}{1000} \cdot TC_{Ponderada}$$

$$CC = 6570 \text{ hs} \cdot \frac{11,7637 \text{ MW}}{1000} \cdot \text{R\$ 28,79 / MW} \cdot \text{h} = \text{R\$ 2.225,1073}$$

· Custo Anual de Demanda:

$$CD = Pot \cdot 12 \text{ meses} \cdot TDfp$$

Considerou-se no caso, que o sistema deverá operar fora do período de ponta, logo:

$$CD = 11,7637 \text{ KW} \cdot 12 \text{ meses} \cdot R\$1,51/\text{KW} = R\$213,1582$$

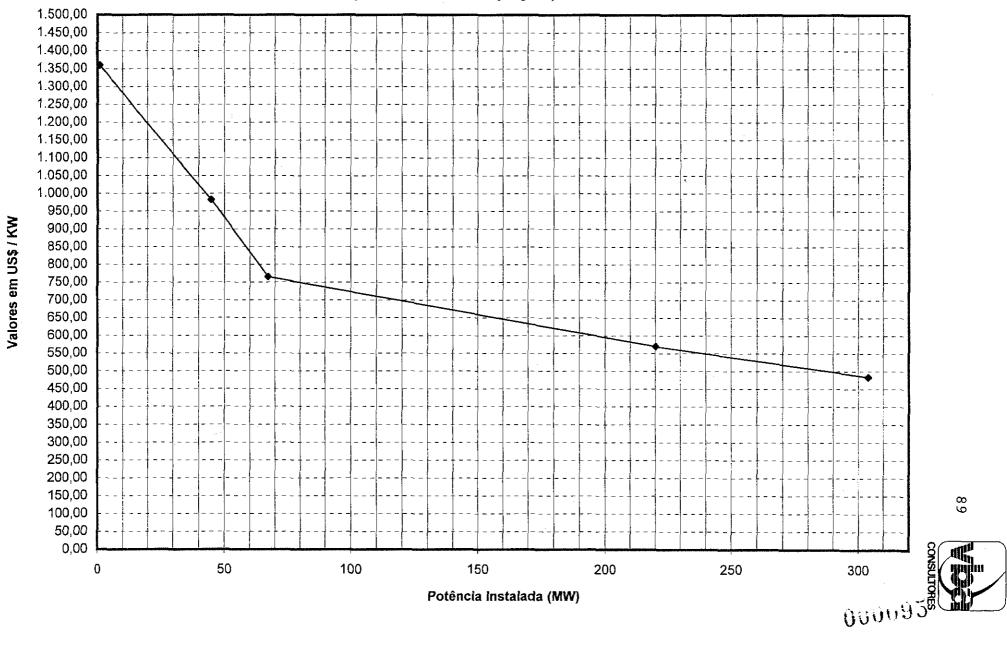
Custo Médio Anual de Energia para elevar 1,0 m³/s a 1 m.c.a. de altura manométrica:

$$\overline{CM} = \frac{CC + CD}{V}$$

$$\overline{CM} = \frac{2.225,1073 + 213,1582}{23.652.000} = R\$ 0,00010308 / m³ / m / Bombeado$$

Portanto, assim fica caracterizado o valor de R\$ 0,00010308 para elevar cada 1 m³/s de vazão a uma altura manométrica de 1 m.c.a. segundo as tarifas correntes da CHESF.

Observa-se também que este valor é acrescido em 33% no caso do sistema operar nos períodos de ponta.


2 3.6 - Parâmetros Básicos para Estimativa dos Custos das Elevatórias

Para estimativa dos custos das elevatórias das alternativas a serem estudadas, elaborouse, a partir dos custos das elevatórias originais do Anteprojeto, uma curva de custo médio (US\$ / KW instalado) em função da potência total instalada.

A curva resultante apresentada na Figura 2.5, foi utilizada também, para se recalcular os custos das próprias elevatórias com vazões e potências redefinidas para o projeto atual, que compõem o quadro de consolidação de custo preliminares do projeto nas condições atuais.

A seguir apresenta-se os valores básicos utilizados e uma estimativa dos custos das elevatórias do atual projeto.

Figura 2.5 Curvas de Custos das Elevatórias (com Base no Anteprojeto)

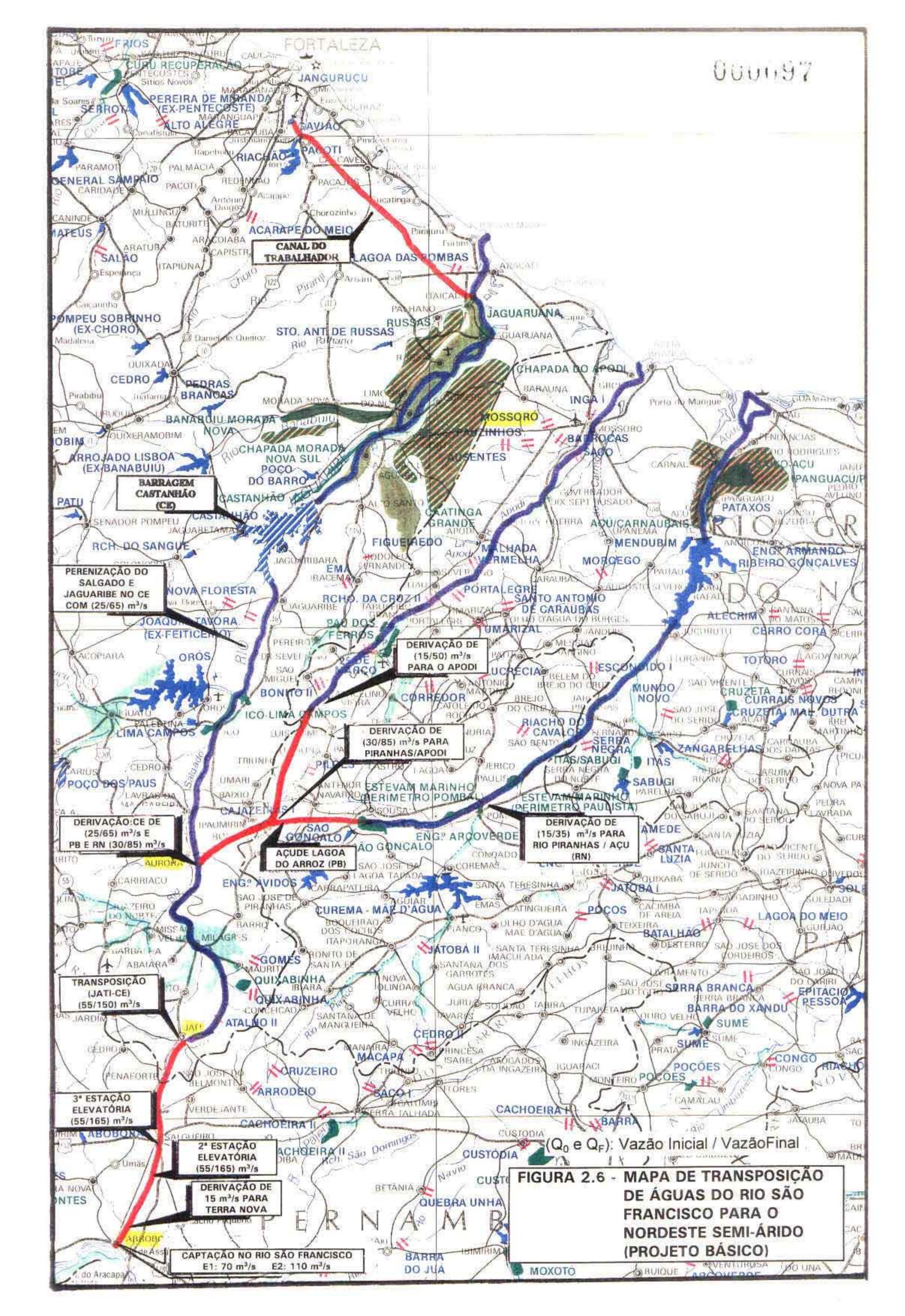
POTÊNCIAS E CUSTOS DAS ELEVATÓRIAS

		ANTEPROJET	Ō	F	ROJETO ATU	AL
Elevatórias	Pot (MW)	Total (US\$ 10 ³)	Média (US\$/KW)	Pot (MW)	Total (US\$ 10 ³)	Média (US\$/KW)
Captação 1ª Etapa	44,8	44 018,15	982,55	24,50	24 750,00	1 010,24
Captação 2ª Etapa	67,2	51 436,31	765,42	38,50	38 115,00	990,00
Terra Nova	220,0	125 299,88	569,54	126,04	100 832,00	800,00
Salgueiro	304,0	147 085,37	483,83	174,17	118 435,60	680,00
TOTAIS	636,0	367.839,71		363,21	282.132,60	

2 4-VAZÕES, FASEAMENTO PRELIMINAR DA IMPLANTAÇÃO E PARÂMETROS ECONÔMICOS FINANCEIROS BÁSICOS PARA O ESTUDO DE ALTERNATIVAS

Conforme já mencionado na Parte A Estudo das Demandas Hídricas, as vazões atuais para dimensionamento foram definidas tanto em função de condicionantes técnicos, como políticos e econômicos As vazões assim definidas e adotadas definitivamente pela coordenação do projeto são a seguir indicadas, trecho por trecho, na Figura 2 6 - Mapa Geral do Projeto Básico (escala 1 2.000 000)

2 4 1 - FASEAMENTO DAS OBRAS E SÉRIES DE VAZÕES E VOLUMES BOMBEADOS


Em razão dos elevados volumes que deverão ser consumidos na evaporação e enchimento das barragens de Transposição de vales, verificou-se que um dos parâmetros mais importantes para avaliação técnico-econômica das alternativas de canais substituindo as barragens do Anteprojeto, seria o valor do custo do m³ d'água transposto até cada local de consumo ou perdas.

Para se obter parâmetros para avaliação preliminar do custo real desta água transposta, tanto em função dos valores atualizados dos custos de investimento, operação e manutenção, energia e dos possíveis volumes faturáveis, foi necessário se definir, mesmo que preliminarmente, um cronograma de faseamento de obras e demandas potenciais para a vida útil do projeto (considerando 40 anos), de tal forma a se obter todos elementos básicos necessários para a análise das diferentes alternativas

Nos Quadros 2 5a, 2 5b, 2 6a e 2 6b, a seguir apresentados constam todos os elementos para cálculo do valor atualizados custos no projeto para as taxas de juros de 8% e 12% a a

2 4 2 - ESTIMATIVA PRELIMINAR DOS CUSTOS DE INVESTIMENTO DO PROJETO ATUAL (COM BASE NO ANTEPROJETO)

Além da definição dos parâmetros de atualização para os cálculos do custo de água, foi necessário, também, uma estimativa preliminar dos custos de investimento do projeto, tomando-se como base uma predefinição das dimensões e as novas características dos componentes do sistema que são apresentados no Quadro 2 7a, juntamente com os custos dos valores atuais de energia de bombeamento

QUADRO 2 5a Trecho 1 Transposição São Francisco - Jati Faseamento da Implantação da Obra e Séries de Vazões e Volumes de Bombeamento

Etapa	Ano	Captaçã Está	o São Fra gio 2º	ncisco Total Captação	% Acrescido da Etapa	Qmax Bo	mb Anual % do Total	Qmedio m²/s	Vol Anuais Favoráveis c/75 de Utilização	Volume Equivalent		Fator de Atualo	
				- , ,			85 m³/s		10° m²	12%	8%	12%	8%
Construção	1											1 25	1.1
1º Etapa	-2											1 12	1.0
	1	70	0	70	20	14	7 78	11	331 128 00	295 650 00	306 600 00	C 89	0.8
1º Etapa	2	70	0	70	20	28	15 56	21	662 256 00	527 946 43	567 777 78	0.80	0.8
Operação	3	70	0	70	20	42	23 33	32	993 384 00	707 071 11	788 580 25	0.71	0.7
•	4	70		70	20	56	31 11	42	1 324 512 00	841 751 32	973 555 86	0.64	0.7
70	5	70	0	70	20	70	38 89	53	1 655 640 00	939 454 60	1 126 800 76	0 57	06
	6	70	60	130	20	82	45 56	62	1 939 464 00	982 592 82	1 222 191 31	0.51	0.6
2º Etapa	7	70	60	130	20	94	52 22	71	2 223 288 00	1 005 702 58	1 297 267 19	0 45	0.5
Operação	8	70	60	130	20	106	58 89	80	2 507 112 00	1 012 580 49	1 354 514 60	0.40	0.5
. ,	9	70	60	130	20	118	65 56	89	2 790 936 00	1 006 439 50	1 396 162 85	0 36	0.5
+ 60	10	70	60	130	20	130	72 22	98	3 074 760 00	989 990 43	1 424 208 81	0 32	0.4
	11	70	110	180	20	140	77 78	105	3 311 280 00	951 913 87	1 420 151 23	C 29	0.4
3° Etapa	12	70	110	180	20	150	83 33	113	3 547 800 00	910 631 89	1 408 880 19	0 26	0.4
Operação	13	70	110	180	20	160	88 89	120	3 784 320 00	867 268 47	1 391 486 61	0 23	0.3
-puy	14	70	110	180	20	170	94 44	128	4 020 840 00	822 743 53	1 368 939 37	0 20	0.3
+ 50	15	70	110	180	20	180	100 00	135	4 257 360 00	777 803 75	1 342 097 43	0 18	0.3
	16	70	110	180	0	180	100 00	135	4 257 360 00	694 467 64	1 242 682 80	0 16	02
	17	70	110	180	l ő	180	100 00	135	4 257 360 00	620 060 39	1 150 632 22	D 15	02
	18	70	110	180	ő	180	100 00	135	4 257 360 00	553 625 35	1 065 400 21	0 13	0 2
	19	70	110	180	0	180	100 00	135	4 257 360 00	494 308 35	986 481 67	0 12	0.2
	20	70	110	180	0	180	100 00	135	4 257 360 00	441 346 74	913 408 96	0 10	02
	21	70	110	180	0	180	100 00	135	4 257 360 00	394 059 59	845 749 03	0.09	0.2
	22	70	110	-	- 0	180	100 00	135	4 257 360 00	351 838 92	783 100 96	0.08	0 1
	23	70	110	160		180	100 00	135	4 257 360 00	314 141 89	725 093 48	0 07	01
Regime	24	70	110	180	0	180	100 00	135	4 257 360 00	280 483 83	671 382 85	0.07	0 1
Normal	25	70	110		- "	180	100 00	135		250 431 99	621 650 79	0.06	0 1
do	26	70	110	-	- 6	180	100 00	135	4 257 360 00	223 599 99	575 602 58	0.05	0 1
Projeto	27	70	110		0	180	100 00	135	4 257 360 00	199 642 85	532 965 35	0.05	0.1
rivjeto	28	70	110	180	- 0	180	100 00	135	4 257 360 00	178 252 55	493 486 44	0.04	0.1
	29	70	110			180	100 00	135	4 257 360 00	159 154 06	456 931 89	0.04	01:
	30	70	110			180	100 00	135	4 257 360 00	142 101 84	423 085 08	0.03	0 1
	31	70	110			180	100 00	135	4 257 360 00	126 876 64	391 745 44	0 03	00
	32	70		180	0	180	100 00	135	4 257 360 00	113 282 72	362 727 26	0 03	0.00
	33	70	110			180			4 257 360 00		335 858 58	0.03	00
	-		110	-			100 00	135		101 145 28			00
	34	70	110			180	100 00	135	4 257 360 00	90 308 29	310 980 16	0 02	00
	35	70	110	_		180	100 00	135	4 257 360 00	80 632 40	287 944 60	0 02	0.00
	36	70	110		0	180	100 00	135	4 257 360 00	71 993 21	266 615 37	0 02	
	37	70	110	_	0	180	100 00	135	4 257 360 00	64 279 65	246 866 08	0.02	00
	38	70	110		0	180	100 00	135	4 257 360 00	57 392 55	228 579 70	0 01	
	39	70	110			180	100 00	135	4 257 360 00	51 243 35	211 647 87	001	00
Arg Der_con5 wi	40	70	110	180	0	180	100 00 Soma	135	4 257 360 00 142 858 080,00	45 752 99	195 970 25	0.01	00

Volume equivalente ao Valor Atual da Série dos Volumes Bombeados no Trecho

Volume Faturado Atualizado (180 m²/s)	18 739 963,85	31 716 803,88	5,24
Volume Faturado Atualizado (165 m³/s)	16 714 021,81	28 287 068,33	
Volume Faturado Atualizado (150 m³/s) Volume Faturado Atualizado (65 m³/s)	15 194.565,29 6 584 311,62	25 715 516,66 11 143 390,55	
Volume Faturado Atualizado (65 m/s)	0 554 311,02	11 143 390,55	
Volume Faturável Máximo Possível	35 096 725 09	50 767 371,82	
Coeficiente de Faturamento	53,40	62,47	
Qmédlo	113,25		
Umedio	113,23		

11,92

QUADRO 2 5b Trecho 2 Transposição Salgado - Piranhas - Apodo Faseamento da Implantação da Obra e Séries de Vazões e Volumes de Bombeamento

			o São Fra		%	Qmax Bo	mb Anual [Vol Anuais	F**			
Etapa	Ano	Está		Total	Acrescido		<u> </u>	Qmédio	Favoráveis c/75	Volume Equivaler		Fator de Atua	
		1"	2*	Captação	da Etapa	m³/s	% do Total 85 m³/s	m³/s	de Utilização 10° m²	dos Volumes Bomb	eados e Faturados	12% Data	8%
	+ -1						03 11178		10 111		070	1 25	1 17
Construção	1			 									1 08
1º Etapa	-2								444 242 22	400 707 44	404 400 00	1 12	0.93
	\vdash	30	. 0			6	7 06	4 50		126 707 14	131 400 00	0 89	
1º Etapa	2	30	0		20	12	14 12	8 00	283 824 00	226 262 76	243 333 33	0.60	0.64
Operação	3	30	0		20	18	21,18	13 50	425 736 00	303 030 48	337 962 96	0 71	0.79
	4	30	. 0	- · · · ·	20	24	28 24	18 00		360 750 57	417 238 23	0.64	0.7
30	5	30	0		20	30	35 29	22 50		402 623 40	482 914 61	0 57	0.6
	6	30	25		20	35	41 18	26 25		419 399 37	521 667 02	0.51	0.6
2° Etapa	12	30	25		20	40	47 06	30 00	946 080 00	427 958 55	552 028 59	0 45	05
Operação	8	30	25	55	20	45	52 94	33 75	1 064 340 00	429 869 07	575 029 78	0 40	0.5
	9	30	25	55	20	50	58 82	37 50	1 182 600 00	426 457 42	591 594 43	036	0.5
+ 25	10	30	25	55	20	55	64 71	41 25	1 300 860 00	418 842 10	602 549 88	0 32	C 44
	11	30	55	85	20	61	71 76	45 75	1 442 772 00	414 762 47	618 780 18	0 29	0.4
3° Etapa	12	30	55	85	20	67	78 82	50 25	1 584 684 00	406 748 91	629 299 82	0 26	0.4
Operação	13	30	55	85	20	73	85 88	54 75	1 726 596 00	395 691 24	634 865 77	0 23	0.3
	14	30	55	85	20	79	92 94	59 25	1 868 508 00	382 333 76	636 154 18	0 20	03
+ 30	15	30	55	85	20	85	100 00	63 75	2 010 420 00	367 296 22	633 768 23	0 18	0.3
	16	30	55	85	0	85	100 00	63 75	2 010 420 00	327 943 05	586 822 43	0 16	0.2
	17	30	55	85	0	85	100 00	63 75	2 010 420 00	292 806 30	543 354 11	0 15	0.2
	18	30	55	+	0	85	100 00	63 75			503 105 65	0 13	0.2
	19	30	55	+		85	100 00	63 75		233 423 39	465 838 57	0 12	0.2
	20	30	55		 -	85	100 00	63 75			431 332 01	0 10	02
	21	30	55			85	100 00	63 75		186 083 69	399 381 49	0.09	0.2
	22	30	55				100 00	63 75		166 146 16	369 797 67	0.08	0 1
	23	30	55		_	85	100 00	63 75			342 405 25	0 07	01
Regime	24	30	55			85	100 00	63 75		132 450 70	317 041 90	0 07	01
Normal	25	30	55	+	 -	85	100 00	63 75			293 557 32	0.06	0.1
do	25	30	55			85	100 00	63 75		105 588 89	271 812 33	0.05	0.1
	-		55			85				 		0 05	01
Projeto	27	30				85	100,00	63 75		94 275 79	251 678 08	0 04	0.1
	28	30	55	1			100 00	63 75			233 035 26		
	29	30	55			85	100 00	63 75		 	215 773 39	D 04	0.1
	30	30	55			85	100 00	63 75			199 790 18	0 03	
	31	30	55			85	100 00	63,75			184 990 90	0 03	00
	32	30	5 <u>5</u>		 -	85	100 00	63 75			171 287 87	0 03	00
	33	30	55			85	100 00	63 75		 	158 599 88	0 02	0.0
	34	30	55			85	100 00	63 75			146 851 74	0 02	0.0
	35	30	55				100 00	63 75			135 973,84	0 02	00
	36	30	55	85	0	85	100 00	63 75	2 010 420 00	33 996 80	125 901 70	0.02	0.0
	37	30	55	85	0	85	100 00	63 75	2 010 420 00	30 354 28	116 575 65	0 02	00
	38	30	55	85	0	85	100 00	63 75	2 010 420 00	27 102 04	107 940 42	0 01	0.0
	39	30	55	85	0	85	100 00	63,75	2 010 420 00	24 198 25	99 944 83	0.01	0.0
	40	30	55	85	0	85	100 00	63 75	2 010 420 00 66 343 860,00		92 541 51	0.01	00

Volume equivalente ao Valor Atual da Séne dos Volumes Bombeados no Trecho

Volume Faturado Atualizado (85 m3/s)	B 389 488,79	14 373 9 21,01	8 24
Volume Faturado Atualizado (50 m3/s)	4 934 993,40	8 455 247,65	
Volume Faturado Atualizado (30 m3/s)	2 960 996,04	5 073 148,59	
/olume Faturável Máximo Possível	16 573 453,52	23 973 481,14	
eficiente de Faturamento	50,62	59,96	
Imédio	52,59		

1)601199

11,92

QUADRO 26b Estimativa dos Parametros de Atualização dos Custos de Investimento e Operação e Manutenção do 2º Estágio da Captação (no Rio São Francisco)

					1 BARRAG	ENS		ESTA	ÇÕES	DE BOMBI	EAMENTO			3 Canair						4 obras				
Etapa	Ano	Fator de Atualiz p/12%	Falor de Atueliz p/8%	UDC %	100,00 Valor	Operação e Manutenção 1,00		bra Civil 40,00 Valor	UDC Equi UDC %	100 00 pamentos 60,00 Valor	Total das EBs	% Operação e Manutenção 2,00	UDC	100,00 Valor	% Operação e Manutenção 1 00		Fase 100,00 Valor	% Operação e Manutenção 0,50		100,00 Valor	Operação e Manutenção 0,50	l	Fase 100,00 Valor	% Operação e Manutenção 0 50
Construção	1	1,25																						
1º Etapa	-2	1,12	1,08																					
*	1	0,89	0,93																			L		
1º Etapa		0,80	0,86																L.,					
Operação		0,71	0,79										<u> </u>			L			L	L		L		L
	4	0,64		0,50	50,00	⊷—	0,50				20,00	•	0,50							<u> </u>	L	_		
70			0,68	0,50	50,00		0,30	12,00		24,00	36,00		_	50,00	0,50	1,00	100,00		0,50	50,00		0,50	50,00	
		0,51		\longmapsto		1,00	_		0,20	12,00	12,00		_		1,00	<u> </u>	ļ <u>.</u>	0,50	ļ <u>.</u>	<u> </u>	0,25	igwdapprox		0,25
2° Etapa	7	0,45	ļ	<u> </u>		1,00						1,36			1,00			0,50	<u> </u>		0,25		L	0,2
Operação	8	0,40	_			1,00						1,36			1,00		L	0,50	<u> </u>		0,25	0,25	25,00	
		0,36				1,00						1,36			1,00		├──	0,50	_		0,25		25.00	0,38
+ 60	10	_					0,20	8,00	0,40	24,00	32,00				1,00	├	├──	0,50	0,50	50,00	0,25	0,25	25,00	
	11		0,43			1,00						2,00			1,00	┝	 	0,50	┡		0,50	-		0,50
3° Etapa	12	•		$\overline{}$		1,00						2,00			1,00	-		0,50	_		0,50	├		0,50
Operação	13	1				1,00						2,00			1,00	ļ	 -	0,50	ł.—		0,50	-		0,50
	14			-		1,00						2,00	_		1,00	-			-					
+ 50	15					1,00			\vdash			2,00	——		1,00			0,50			0,50	\vdash		0,50
	16	_		 		1,00						2,00			1,00	_	 -	0,50			0,50	\vdash		0,50
	17		_	\vdash		1,00						2,00 2,00						0,50	\vdash		0,50			0,50
	18		_	 +		1,00			\vdash			2,00			1,00		 	0,50			0,50	\vdash		0,50
	20	+		 		1,00			-			2,00	•		1,00	ł		0,50	├ ─		0,50	\vdash		0,50
	21		_			1,00			-			2,00			1,00	\vdash	 	0,50	⊢		0,50	\vdash		0,50
	22	.,	0,20 0,18			1,00						2,00			1,00	\vdash	 	0,50	-		0,50			0,50
	23			$\overline{}$		1,00						2,00			1,00		 	0,50	-	f ··-	0,50	f		0,50
	24			\vdash		1,00						2,00			1,00		 -	0,50		-	0,50	┝┈┤		0,50
4° Etapa	25		_	$\overline{}$		1,00						2,00	-		1,00	┢──	 	0,50		-	0,50	-		0,50
4º Etapa Operação	26		_			1,00			\vdash			2,00			1,00	├		0,50	1		0,50			0,50
Operação	27	+	_	_		1,00			\vdash			2,00			1,00	 	 	0,50	1		0,50	H		0,50
	28		0,12	-		1,00	_					2,00			1,00			0,50			0,50	\vdash		0,50
	29		0,11	_		1,00	_	-				2,00			1,00	-	 	0,50	1		0,50	├ ┈		0,50
	36	+ -	0,10	_		1,00	_		_			2,00			1,00	\vdash	 	0,50	-		0,50			0,50
	31					1,00						2,00			1,00			0,50			0,50	\vdash		0.50
	32	•	_	-		1,00						2,00			1,00	\vdash	 	0,50			0,50			0,50
	33		Į	$\overline{}$		1,00			_			2,00	_		1,00	-		0,50			0,50			0,50
	34			-		1,00	_					2,00			1,00	\vdash	 	0,50			0,50			0,50
	35	_		\rightarrow		1,00	_			-		2,00	+		1,00	\vdash	t	0,50			0,50			0,50
	36	_	1			1,00	_		\vdash			2,00			1,00		 	0,50	-		0,50	\Box		0,50
	37	_	1			1,00			П			2,00			1,00	╁		0,50	t		0,50			0,50
	32	.,	0.05	+		1,00						2,00			1,00	\vdash		0,50			0,50			0,50
	39	+ '	0,05	$\overline{}$		1,00						2,00			1,00		<u> </u>	0,50			0,50			0,50
	40	-1	0.05	\rightarrow		1,00	_					2,00			1,00		<u> </u>	0,50			0,50			0,50
Are Con (E) who		.,		·									•		,			,						
Fatores de Al	tualiza	ção p/8	%		0,7078	1,0827		0,2657		0,3501	0,6159	1,1425		0,7078	1,0827		0,6806	1,0397		0,5719	1,0329		0,5912	1,0341
																								4 04 90

0,4652 1,0189 Fatores de Atualização p/12% 0,2210 0,2743 0,4952 1,0807 0,6015 1,0492 0,5674 1,0232 0,4447 1,0181 0,6015 1,0492

					BARRAGE	NS	·	ESTA	ÇÕES	DE BOMBE	AMENTO			CANAIS	3					BRAS				
Elapa	Ano	de	Fator de Atualiz p/8%	UDC %	100 00 Valor	% Operação e Manutenção 1 00		ra Civil 40,00 Valor	UDC Equip UDC	100,00 pamentos 60,00 Valor	Total das EBs	% Operação e Manutenção 2 00	UDC %	100 00	% Operação e Manutenção 1 00		Fase 100 00 Valor	% Operação e Manutenção <i>0 50</i>	l	Fase 100 00 Valor	Operação e Manutenção 0 50	i .	Fase 100,00 Valor	% Operação e Manutenção 0 50
Construção	1	1,25	1,17	0,50	50,00		0,35	14,00		Valo	14,00	200	0,50	50,00		0,50	50,00	- 030	┌╌	*****	-230		_V#101	-
1º Etapa	.2	1,12	1,08	0,50	50,00		0.35	14,00	0,40	24,00	38,00		0,50	50,00		0,50	50,00		0.50	50,00		0,50	50,00	_
	1	0,89	0,93		- 50,50	1.00	*,00	,00	0,10	6,00	6,00	1,04	0,00	30,00	1,00	0,50	50,00	0,50		30,00	0,25	0,50	30,00	0,25
1º Etapa	2	0,80	0,86			1,00			-,,	,		1,16			1,00			0,50	_		0,25			0,25
Operação	3	0,71	0,79			1,00			ŀ			1,18			1,00			0,50			0,25			0,25
	4	0,64	0,74			1,00						1,16			1,00			0,50			0,25			0,25
70	5	0,57	0,68			1,00	0,15	6,00	0,20	12,00	18,00	1,16			1,00			0,50	0,50	50,00	0,25	0,25	25,00	0,25
	6	0,51	0,63			1,00			0.10	6,00	6,00	1,52			1,00			0,50		.,	0,50			0,38
2º Etapa		0,45	0,58			1,00						1,64			1,00			0,50	<u> </u>		0,50			0,38
Operação	<u>B</u>	0,40	0,54	- 1		1,00					,	1,64			1,00			0,50	<u> </u>		0,50		·	0,38
1	9	0,36	0,50			1,00						1,64	\Box		1,00			0,50	L		0,50			0,38
+ 60	10		0,46			1,00	0,15	6,00	0,20	12,00	18,00	1,64		_	1,00			0,50			0,50	0,25	25,00	
35 544	11	0,29	0,43	-		1,00						2,00	\longmapsto		1,00			0,50			0,50			0,50
3" Etapa	12	0,26	0,40			1,00 1,00	\vdash					2,00			1,00	_		0,50	 		0,50			0,50
Operação	14	0,20	0,34	\vdash		1,00		-				2,00 2,00	\vdash		1,00	-		0,50	 		0,50			0,50
+ 50	15		0,32			1,00	-					2,00			1,00			0,50			0,50 0,50	\vdash		0,50 0,50
1.00	16	0,16	0,29			1,00		-				2,00	\vdash		1,00			0,50			0,50	-		0,50
	17	0,15	0,27			1,00						2,00			1,00			0,50	\vdash		0,50			0,50
	18	0,13	0,25	<u> </u>		1,00						2,00			1,00			0,50			0,50			0,50
1	19	0,12	0,23			1,00			\neg			2,00			1,00			0,50			0,50			0,50
	20	0,10	0,21			1,00						2,00			1,00			0,50			0,50			0,50
1	21	0,09	0,20			1,00						2,00			1,00			0,50			0,50			0,50
	22	0,08	0,18			1,00						2,00			1,00			0,50			0,50			0,50
i	23	0,07	0,17			1,00						2,00			1,00			0,50			0,50			0,50
1	24	0,07	0,16			1,00						2,00			1,00			0,50			0,50			0,50
4° Etapa	25	0,06	0,15			1,00						2,00			1,00			0,50			0,50			0,50
Operação	26	0,05	0,14	 ⊦		1,00						2,00	1		1,00			0,50			0,50			0,50
ļ.	27	0,05	0,13	\longrightarrow		1,00	\rightarrow					2,00			1,00			0,50			0,50			0,50
1	28	0,04	0,12			1,00	-					2,00	-		1,00			0,50			0,50			0,50
J .	29 30	0,04	0,11	—-·}·		1,00 1,00		-				2,00	\vdash		1,00			0,50	<u> </u>		0,50			0,50
	31	0,03	0,09			1,00		+				2,00 2,00			1,00 1,00			0,50 0,50			0,50 0,50			0,50 0,50
	32	0,03	0,09	$\overline{}$		1,00	\rightarrow					2,00			1,00			0,50	\vdash		0,50	$\overline{}$		0,50
	33	0,02	0,08			1,00						2,00			1,00			0,50			0,50			0,50
	34	0,02	0,07			1,00						2,00			1,00			0,50	_		0,50			0,50
j .	35	0,02	0,07			1,00						2,00			1,00			0,50			0,50			0,50
	36	0,02	0,06			1,00						2,00			1,00			0,50			0,50			0,50
	37	0,02	0,06			1,00						2,00			1,00			0,50			0,50			0,50
1	38	0,01	0,05			1,00						2,00			1,00			0,50			0,50			0,50
	39		0,05			1,00						2,00			1,00			0,50			0,50			0,50
	40	0,01	0,05			1,00						2,00			1,00			0,50			0,50			0,50
Arq Com_001 will														-									_	
Fatores de A	lualiza	ção p/			1,1232	1,1192		0,3831		0,4898	0,8729	1,1933		1,1232	1,1192		1,1232	1,0596		0,8803	1,0496		0,8259	1,0462
Fatores de A	tualiza	ção p/1	2%		1,1872	1,0824		0,3858		0,4595	0,8453	1,1256		1,1872	1,0824		1,1872	1,0412		0,8437	1,0322		0,7824	1,0297

Obs UDC - Unidade de Capital Relativa a Custo do Componente

į

QUADRO 2.7a

Dados Básicos e Estimativa Preliminar dos Parâmetros Médios de Custos de Bombeamento do Projeto Atual para a Avaliação das Alternativas (US\$/10³)

(Com Base no Ajuste Preliminar dos Custos do Sistema do Anteprojeto e Custos ja Disponíveis do Projeto Atual)

				1º Trecho São	Francisco Jati				2º Trecho	Salgado Pirani	has - Apodl		
			1º Sub-Trecho		2º Sub-Treche	3º Sub-Trecho		Trecho	1º Sub-Trecho	2º Sub-Trecho	3° Sub-Trecho		
1	Discriminação das Obras e Dados Básicos e Elémentos de Custos	Cantacão (Braco á	Assunção + São Fran	ciscoV Terra Nova	Terra Nova /	Salgueiro /		Leto Natural	Salgado-Jilirana/	Umburana /	Born Jesus IV/		
i	Sisteminação das Obras o Destro Destro o Distribuição do Octobro	1º Estágio	2º Estácio	1	Salqueiro (PE)	Jati (CE)	TOTAL 1	Jat/SAlgado	Umburana	Bom Jesus IV	Major Sales	TOTAL 2	TOTAL
		Braco Assunção /	São Francisco /	Total	Cargoono (1 L)	1000 (02)	I I I I	Dall Grugado	Ollibardin.	DOIN 36303 14	major caros	10/25	GERAL
		Terra Nova	Vermeino										(1+2)
L													`` _/
1	VAZÕES DO SISTEMA												
11	Vazão máxima de dimensionamento do trecho	70,00	110,00					150,00	85 00		50,00		
1.2	Vszāo derivada no Trecho			15,00			•	65,00	-	35,00			
13	Altura Manométrica no Trecho	29,75		30,88					33,00				
14	Altura Manométrica Acumulada no Trecho	29,75	31,64	30,88	90,25	171,98	171,98	171,98	204 98	204,98	204,98	<u> </u>	
2	DADOS PRINCIPAIS DAS OBRAS COMPONENTES	T	78.88	****	19 18	A. 48							
2 1	Canais (km)	27,09						· ·	7,91		62,83	86,80	173,17
22	Tuneis (km)	<u> </u>		-		1,51			2,74	0,40	4,85	7,99	9,50
23	Aqueduto/Sifões (km)	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 401 75	5 728 50	1 08		9 131,40	-	2 444 44	4 FAA 94	4 44 432		1,08 18 186,45
24	Desapropriações e interferências	4 326,75			987,60				6 183,75	1 583,70	1 287 60		
25	Linhas de Transmissão 230 KV (km)	30,00							-			- ,	105,00
26	Barragens (Unidades)	5,00			3,00				5,00	9 00	5,00		39,00
	Volume Acumulado (Enchimento Incial) 10º m²	133 050,00		195 250 00	44 500,00	131 090,00	370 840,00		449 150,00	61 970,00	9 800,00		
26b	Area Inundada (Evaporação) ha	3 267,00				1 604,00			5 020,00	1 114,00	227 00		12 858,00
26 c	Volume Anual Evaporado (10º m²/ano)	56 573,29	18 432,90		10 156,65				63 935,20	14 816,46	3 098,13		193 782,01
	Vazão Média Continua de Evaporação (m²/s)	1,79	0,58 6,54	2,38	0,32		3,55		2,03		0,10		6,14
	Tempo de Enchimento das Barragens do Trecho para a Vazão Inicial	22,00			9,36				173,28	23 91	3,78	,	266,47
27	Estações Elevatórias (Nome)	Assunção		Assunção/SF		Salgueiro		-	3 00		<u> </u>	-	+
	Altura Manométrica da Elevatória (m.c.a.)	29,75			59,37	81,73			33,00		-		
	Vazāo Máxima (m²/s)	70,00	110,00		165,00	165,00		150 00	85,00	85,00	50 00		
27 c	Potencia instalada (MW)	24,50	38,50	63,00	126,04	174,17	363,21	•	32,99			32,99	396,20
3	ELEMENTOS BASICOS P/ESTIMATIVA DOS CUSTOS DE BOMB			AR EE	AA ==	797 EX	, ,			88144	00/		
3 1	Altura Manométrica Acumulada até o Trecho	29,75			90,25			171 98	204,98	204,98	204 98		
32	Custo Unitário de Enérgia de Bombeamento até o Trecho (US\$/10" m²)	3,07	3,26		6,12				3,40			3,40	3,40
	Volume Anual Max. Faturável (Qmédio = 0,75 Qmax.) x 10° m²	-		4 257 360,00		•	-		2 010 420,00	-		· •	
3 4	Volume Equivalente a Série de Valores Faturáveis Atualizado (10^6)	10 855 555 45	40.004.000.42	44 74F 888 88	AA AA 7 AAA 64	AA AA9 AAA **		8 P 9 / P P / A P P	44 570 687 = 1	11070 001 21	A 155 K1 = x+		
	Para a Taxa de 8%	12 333 923 10	19 35 1 550, 15	31 /15 603,88	25 25 / U68,33	28 28 / 068,33	50 269 940,54	25 /15 516,66	14 3/3 921,01	14 3/3 921,01	8 455 247,65	62 918 606,33	101 208 546,87
34b	Para a Taxa de 12%	7 287 763,72	11 452 200,13	10 /39 963,85	10 /14 021,81	16 714 021,81	52 768 007,47	15 194 565 29	8 389 488,79	ö 389 488,79	4 934 993 40	36 908 536,27	89 076 543,74
4	CUSTO DA ENERGIA DE BOMBEAMENTO	1AA XA	565 55	887 581	448 55		A APA 727			/ 888 557			
4 1	Custo do Enchimento Inicial	408,02				2 323,92			9 490,24	1 309,39	207 07		14 366,10
4.2	Custo Anual de Energia Relativa a Perdas por Evaporação	173 49	60,12	238,75	94,49	474,56	807,80		1 350,91	313,06	65,46	1 729,43	2 537,23
43	Valor Atual da Energia Relativa a Perdes por Evaporação		778-84	- 6 40 / 65	1 155 65	F AFA 9F	4 547 44		10 1 10 10		704		
	Para a Taxa de 8%	2 067,99	716,61,	2 784,60	1 126,29	5 656,75			16 102,83	3 731,70	780,30	20 614,83	30 182,46
43b	Para a Taxa de 12%	1 429,55	495,37	1 924,92	778,57	3 910 37	6 613,87		11 131,49	2 579 63	539,40	14 250,52	20 864,39
4 4	Valor Atual da Energia de Bornbeamento dos Volumes Faturávies	- 53 866 FA	60 046 56	484 885 XA	498 446 SS	000 046 57	FAR 488 AA		10.001.00				
448	Para a Taxa de 8%	37 823,58	63 213,06		173 112,89				48 894,90			48 894,90	561 355,29
44b	Para a Taxa de 12%	22 348,87	37 350,79	59 699,67	102 287,47	140 811 09	302 798,23		28 538,02			28 538,02	331 336,25
45	Valor Atual Total da Energia (Perdas Evaporação+ Volume Enchimento)	A 490 02	040.44	A 405 /8		7 ////	20.022.23	L				4/44/50	
4 5 a	Para a Taxa de 8%	2 476,01	919,47	3 395 48	1 540 27	7 980,67	12 916,42		25 593,07	5 041,08	987,37	31 621,52	44 537,94
	Para a Taxa de 12%	1 837,57	698 23	2 535,80	1 192 56	6 234 29	9 962,65		20 621,73	3 889,02	746,47	25 257,21	35 219,87
46	Valor Atual Total da Energia (Perdas + Volumes Faturáveis)	10 000 50	A 456 FA	484 486 44	49 / APA 22	545 552 54	PAP 474"		74 487 22	F 611 43			
46a	Para a Taxe de 8%	40 299,59	64 132,53	104 432 11	174 653,15				74 487,98	5 041,08	987,37	80 516,43	605 893,23
46 b	Para a Texa de 12%	24 186,44	38 049,03	62 235,47	103 480 02	147 045,39	312 760,88		49 159,75	3 889,02	746,47	53 795,23	366 556,11

Arq Trec wb1

Os custos totais do projeto e o custo médio preestimado para $1 \times 10^3 \text{ m}^3$ d'água transpostas são apresentados no Quadro 2 7b

Conforme observou-se, os custos de investimentos foram calculados com base no Anteprojeto, através de relações paramétricas de curvas de custos e vazões, porém fazendo-se ajustes, quando as atuais informações indicavam necessário. Cita-se como exemplo do aumento percentual do material de escavações em terceira categoria de aproximadamente de 40% para 85% do volume escavado, o que representou, em média, em aumento de 40% no custo das seções tipo predefinidas para os canais

Para compensar a eliminação da barragem Aurora, previu-se para simples composição preliminar de custos, uma estação de bombeamento, no mesmo local, que corresponde a uma das alternativas (alternativa AC2-A) que deveriam ser estudadas para a Transposição do Trecho 2 Salgado - Piranhas - Apodi

QUADRO 27b (12%)

Estimativa Preliminar dos Parâmetros e Custos Globais Médios Atualizados do Traçado do Anteprojeto com a Taxa de 12% para Avaliação das Alternativas

(Estimativa Preliminar do Valor Alual do Custo da Água Transportada)

<u> </u>	Discriminação das Obras e Custos Para 12 00%	1º Trecho São Francisco Jati							2º Trecho Salgado Piranhas Apodi					
Ordem		Captação (Braço A 1 Estágio Braço Assunção / Terra Nova	1 Bub-Trecho Assunção + São Franc 2º Estágio São Francisco / Vermelho	Total	2º Sub-Trecho Ferra Nova / Saiguero (PE)	3º Sub-Trecho Seiguero / Jah (Ci.)	TOTAL 1	frecho Ledo Natural Jat/SAlgado	1º Sub-Trecho Selgado Jitrana/ Umburana	2º Sub-Trecho Umburana / Bom Jesus IV	J* Sub-Trecho Rom Jesus IV/ Major Sales	TOTAL 2	TOTAL GERAL (1+2)	
	CUSTO DE INVESTIMENTO	 							ļ					
11	Canais													
1 1a	Custo do Investimento	65 322,43 77 550 79	23 607 41 14 199 86	88 929,84	52 905 79		255 262,88		36 855 88	26 561,61 31 533 94	131 634 25	195 051,74	450 314,62	
1 1b	Valor Atual de Operação e Manutenção	5 382 57		91 750,65 6 544,05		134 660 83 9 346,41	289 221,23 20 249,90		43 755 30 3 036 92	31 533 94 2 188 68	156 276 18 10 846 66	251 565,43 6 072,26	520 786,66 36 322 (6	
12	Túneis	3 302 31	1 101 40	0 344,03	1 333 77	3 3-0,11	20 249,90		3 030 92	2 186 86	10 040 00	16 072,26	39 322,18	
12	Custo de Investimento					13 786,08	13 786,08	<u> </u>	17 741 00	2 590,00	21 820 00	42 151,00	55 937,08	
	Valor Atual do Investmento					16 366,83	16 366,83		21 062 12	3 074,85	25 904,70	50 041,67	66 408,50	
	Valor Atual de Operação e Manutenção Sitões e Aquedutos					567 99	567,99		730 93	106,71	898 98	1 736,62	2.384,61	
	Custo do investimento	∤			12 531 00		12 531,00				1 500 00	1 500,00	14 031.00	
	Valor Alual do Investmento	 	—— —		9 804 25		9 804.25				1 173,60	1 173,60	10 977 85	
	Valor Atual de Operação e Manutenção	T			372 17		372,17				44 55	44,55	416,72	
	Linhas de Transmissão		555 57											
	Custo do Investmento Valor Atual do Investmento	2 045 62 2 045 62	988,91 542,24	2 934,53 2 587,86	1 247 54 247 54	342,36 342,36	4 524,43 4 177,76	ļ .	500,00 500,00			500,00	5 024,43 4,677,76	
	Valor Atual de Operação e Manutenção	2043 02	572 27	2 501,00	1247 34	342 30	4,177,76	- - · · ·	300 00			500,00	4.6//,/6	
	Drenagem e Obras Complementares										*			
1 5a	Custo do investimento	5 020,69	1 226,79	6 247,48	3 426,32	6 479 51	18 153,31		6 032 00	6 457 80	7 348,70	13 838,50	29 991,81	
	Valor Atual do Investmento	5 960,56	736 07	7 417,01 514,79	4 067 73	7 692 47	19 177,21		7 161 19	7 666,70	1 601 18	16 429,07	35 606,28	
	Valor Atual de Operação e Manutenção	413 70	60 36	514,79	282 33	533 91	1 331,03		497 04	532 12	111 13	1 140,29	2.471,33	
	Barragens Custo de Investmento	18 772 14	21 178 29	39 950.43	11 278 40	19:554:09	70 782.92		45 867 48	21 471 10	3 885 14	71 223,72	142.006.64	
	Valor Atual do Investmento	22 286 28	12 738,74	47 429,15		23 214,62	84 033,48		54 453 87	25 490.49	4 612 44	84 556,80	168 590,28	
	Valor Atual de Operação e Manutenção	1 546 82	1 041,97	3 291,92	929 34	1 611 26	5 832,51		3 779 48	1 769 22	320 14	5 868 83	11 701,35	
	Valor da Energia (Perdas por Evaporação e Enchimento)	1 837,57	698,23	2 546,43	1 192,56	6 234 29	9 973,28		20 621 73	3 889 02	746 47	25 257,21	35 230,49	
	Elevatórias	04 750 60	55 445 55	48'888'6'8		178 185 48		_						
	Custo do investimento Valor Atual do Investimento	24 750 00 20 921 18	38 115 00 18 874 55	62,865,00 53 139,78	100 832 00 85 233 29	118 435 60	282,132,60 238 486,69		31 084 00 26 275 31			31 084 00 26 275,31	313 216,60 264,761,99	
	Valor Atual de Operação e Manutenção	3 108 60	3 075 88	7 895.84		14 875,51	35 435,85		3 904 15		· ·	3 904 15	39 340,00	
	Valor da Energia (Perdas por Evap e Enchimento) incluido no item 1 6d	 	0.070.00		12 00 7 00	- (40/0,01)			3 304,15		— ···-+	3 304,13	33 340,00	
1 7a	Valor da Energia (Bombeamento do Volume Faturável)	22 348 87	37 350 79	59 699,67	102 287,47	140 811 09	302 798,23		28 538 02			28 538,02	331 336,25	
	SUBTOTAIS													
	a, Custo do Investimento b Valor Atual do Custo do Investimento	110 890,19 122 803,87	83 789,61 46 355,38	194 679 80	178 794,73	265 545,38	639 019,91		132 048,36	50 622,71	158 839,39	341 510,46	980 530,37	
!	c Valor Atual de Operação e Manutenção	10 037,99	5 279,34	194 907,44 17 731,81	172 484,55 18 325,45	274 698,25 26 401,16	642 090,24 62 458,42		146 046,59 11 451,48	60 099,28 4 064,60	187 966,92 12 110,33	394 112,80 27 626,42	1 036 203,04 90 084,84	
	d Valor do Custo de Energia	24.186.44	38 049.03	62 246 09	103 480.02	147 045,39	312 771.50		49 159,75	3 889,02	746,47	53 795,23	366 566,74	
	VALOR DOS CUSTOS TOTAIS	157 028,30	89 683,75	274 885,34		448 144,80			206 657,83	68 052,90	200 823,73	475 534 45		
2	CUSTOS MEDIOS DA TRANSPOSIÇÃO (p/volume	T					**							
	equivalente a série de volume bombeada atualizados)	40 770 0	10 770 00		10 700 00									
21	Volume equivalente ao yalor atual dos volumes bombeados m²x 10^6 Valor Atual dos Custos Médio (US\$/10*)	18 739 96	18 739 96	18 739,96	18 739 96	18 739 96	18 739,96	8 389 49	8 389 49	8 389 49	8 389 49	8 389,49	18 739,96	
	a Investimento	5 92	4.47	10.39	9.54	34,17	34,10		15 74		18,93	40 74	52,32	
	Acumulado	5,92 5 92	10 39	10,39	9 54 19 93	34,10	34,10	34 10	49 84	5,03 55 87	74 81	40,71 74,81		
	b Investimento Atualizado	6 55	2 47	10,40	9 20	14 661	34,26		17 41	7,16	22 41	46,98	55,29	
	Acumulado	6 55	9 03	9,03		32,89	32,89	32 89		57,46	79 87	79,87		
	c. Valor de Operação e Manutenção Acumulado	0 54 0 54	0 28 0 82	0,95 0,82	0 98 1 80	1,41 3,20	3,33	3 20	1 36 4,57	0,48	1 44	3,29	4,81	
	d Energia	1 29	2 03	3,32		- 3,20 7,85	3,20	3 20		5,05 U.46	6 50 0 09	6,50 6,41	19,56	
}	Acumulado	129	3 32	3,32		16 69	16,69	16 69	5 86 22,55	- 23 01	23 10	23,10	19,50	
3	VALOR DOS CUSTOS TOTAIS (Médios)	8 38	479	14.67	15 70	23 91	54.29		24 63	8 11	23.94	56,68	79,66	
4	VALOR DOS CUSTOS TOTAIS (Médios Acumulados)	8,38	13 17	13,17	28 87	52 78	52,78	52 78	77 42	85 53	109,46	109,46	79.66	
5	CUSTO DE OPORTUNIDADE DAS PERDAS DAS BARRAGENS	3,00					52,10	- 52.70		33 33	100,40	103,40	15,50	
		10 092,67	2 069,69	7 548.05	2 700,71	13 482,47	21 568,50		50 176,60	10 564,59	2 790,59	94 421,22	115 989,72	
ľ	RELATIVAS AO RESARCIMENTO DAS OBRAS	10 092.67	2 003.03	(340.03	2 / 00.7 11	13 404.4/1	2 900.5UI							

QUADRO 2 7b (8%)

Estimativa Preliminar dos Parâmetros e Custos Globais Médios Atualizados do Traçado do Anteprojeto com a Taxa de 8% (para Análise de Referência com a Taxa de 12%) (Estimativa Preliminar do Valor Atual do Custo da Água Transportada)

		1º Tracho São Francisco Jati							2º Trecho Salgado Piranhas Apodi					
Ordem		1 Sub-Trecho				J				1				
Ordem	Discriminação das Obras e Custos Para 8 00%		ssunção + São Franc	sco)/ Тепа Nova	2" Sub-Trecho	J* Sub-Trecho		Trecho	1" Sub-Trecho	2° Sub-Trecho	3º Sub-Trecho	,	i i	
	Fala 0 00%	1º Estágio Braço Assunção / ; Terra Nova	2º Estágio São Francisco / Vermelho	Total	Terra Nova / Salgueiro (PE)	Salgueiro / Jati (CE)	TOTAL 1	Leito Natural Jati/SAlgado	Salgado-Jihi ana/ Umburana	Umburana / Bom Jesus IV	Bom Jesus IV/ Major Sales	TOTAL 2	TOTAL GERAL (1 + 2)	
1	CUSTO DE INVESTIMENTO	 						•		-				
	Canais	†												
		65 322 43	23 607,41	88 929,84		113 427 25	255 262,88		36 855,88		131 634 25 147 851 59	195 051,74	450 314,62	
	Valor Atual do Investmento	73 370 15	16 709,32	90 079,48		127 401 49	276 904,75		41 396 52		147 851 59		495 986,86	
1 1c	Valor Atual de Operação a Manutenção Tunels	7 786 43	1 952 33	9 738,77	6 306 37	13 520 53	29 565,66		4 393 22	3 166 14	15 690 80	23 250,17	52 815,83	
12	Custo do Investimento					13 766 08	13 786.00	·	17 741.00	2 590 00	21 820.00	45.45.45		
1 2b	Valor Atual do Investmento					15 484 53	15 484,53		19 926 69		24 508 22	42 151,00 47 344,00	65 937,08 62 828,53	
1 2c	Valor Atual de Operação e Manutenção					821 65	821.65	···	1 057 36		1 300 47	2 512,20	3 333,85	
											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		3 505,05	
1 3a	Custo do Investimento				12 531,00		12 531,00				1 500 00	1 500,00	14 031,00	
1 3b	Valor Atual do Investmento	 _			10 349 35		10 349,35			·	1 238 85	1 238,85	11 588,20	
1 3c	Valor Atuat de Operação e Manutenção Linhas de Transmissão				578 93		578,93				69 30	69,30	648,23	
148	Custo de Investimento	2 045 62	888 91	2 934.53	1 247 54	342 36	4 524,43		500,00		ļ	500,00		
	Valor Atual do Investimento	2 045 62	604.99	2 650.81		342 36	4 240,51		500,00	· · · · · · · · · · · · · · · · · · ·	<u> </u>	500,00	5 024,43 4 740,51	
	Valor Atual de Operação e Manutenção			2 000,01	121101	342 33	= 270,01		200,00		· · · · · · · · · · · · · · · · · · ·		4 /40,51	
	Drenagem e Obras Complementares									-		_		
	Custo do Investimento	5 020 69	1 226,79	6 247,48	3 426,32	6 479 51	16 153,31		6 032,00	6 457.80	1 348,70	13 838,50	29 991.81	
	V≡lor Atual do Investimento	5 639 24	868 32	7 017,17		7 277 79	18 143,40		6 775 14	7 253 40	1 514 86	15 543,40	33 686,80	
	Valor Atual de Operação e Manutenção	598 47	101 46	744,70	408 42	772 36	1 925,47		719 01	769 77	160 77	1 649,55	3 575,02	
	Barragens Custo do Investmento	16 772 14	21 178,29	39 950,43	11 278 40	19 554 09	70 782,92		45 867 48	***********	3 885 14			
	Valor Atual do Investmento	21 084 87	14 989,99	44.872.32		21 963.15	79 503.38		51 518 35	21 471 10 24 116 34		71 223,72 79 998,48	142 006,64 159 501.86	
	Valor Atual de Operação e Manutenção	2 237,64	1 751,44	4.762,09		2 330,85	8 437.32		5 467 40		463,11	8 489,87	16 927,19	
	Valor da Energia (Perdas por Evaporação e Enchimento)	2 476 01	919,47	3 395,48		7 980 67	12,916,42		25 593 07	5 041 08	987 37	31 621,52	44 537.94	
	Elevatórias						,							
	Custo do Investimento	24 750 00	38 115 00	62.865,00	100 832 00	118 435 60	282 132,60		31 084,00			31 084,00	313 216,60	
	Valor Atual do Investmento	21 604 28	23 475 03	54 874,86		103 382,44	246 273,55		27 133 22			27 133,22	273 406,77	
	Valor Atual de Operação e Manutenção	4 784,18	5 431 39	12 151,80	19 490 83	22 893 60	54 536 23		6 008 54			6 008,54	60 544,77	
	Valor da Energia (Perdas por Evap le Enchimento) incluido no item 1 6d Valor da Energia (Bombeamento do Volume Faturável)	37 823 58	63 213 06	101 036.64	173 112 89	238 310 87	512 460.40		48 894 90					
176	SUBTOTAIS	37 023 36	03 2 13 00	101 030,04	173 112 09	230 310 07	312 460,40		48 894 90			48 894,90	561 355,30	
	a. Custo do Investimento	110 890.19	83 789.61	194 679.80	178 794,73	265 545,38	639 019,91		132 048.36	50 622.71	158 839,39	341 510.46	980 530.37	
	b Valor Atual do Custo do Investimento	118 104,92	55 779,34	192 477,27	171 704,83	268 573,96	632 756,06		140 474,79	56 859,43	177 962,45	375 296.67	1 008 052.73	
	c Valor Atual de Operação e Manutenção	14 808,25	9 135,16	26 652,66	27 720,51	39 566,63	93 939,80		16 926,53	5 879,86	17 523,68	40 330,07	134 269,87	
	d Valor do Custo de Energia	40 299,59	64.132,53	104 432,12		246 291,54	525 376,82		74 487,97	5 041,08	987,37	80 516,42	605 893,24	
	VALOR DOS CUSTOS TOTAIS CUSTOS MEDIOS DA TRANSPOSIÇÃO (p/volume	173 212,75	129 047,03	323 562,05	374 078,50	554 432,13	1 252 072,68		231 889,29	67 780,37	196 473,51	496 143,17	1 748 215,85	
	equivalente a série de volume bombeada atualizados)							1						
	Volume equivalente ao valor atual dos volumes bombeados m³x 10°6	31 715 BO	31 715 80	31 715,80	31 715 80	31 715 80	31 715,80	14 373 92	14 373 92	14 373 92	14 373 92	14 373,92	31 715.80	
	Valor Atual dos Custos Médio (US\$/10²)	0111000	3111333	01110,00	3171300	31713 00	31715,60	1437332	14 3/3 92	14 3/3 92	14 3/3 92	14 3/3,92	31 / 15,80	
	a Investimento	3,50 3 50	2.54	5,14	5,64	8 37	20,15		9,19	3 52	11 05	23,76	30,92	
	Acumulado		2,54 6 14	6,14		20 15	20,15	20 15	29 33	32 86	43 91	43,91		
	b Investimento Atualizado	3 72	1 76	6,07		8,47	19,95		9 77	3 96	12 38	26,11	31,78	
	Acumulado	3 72	5 48	5,48	10 90	19,36	19,36	19 36	29 14	33 09	45 47	45,47		
	c Valor de Operação e Manutenção	0,47	0 29	0,84 0,75	0.87	1 25 2 88	2,96	* ***	1 18	0.41	1,22	2,81 5,68	4,23	
	Acumulado d Energia	0,47				2 88	2,88 16,57	Ž 88	4 05 5 18	4 46	5 68			
	Acumulado	1,27	2,02 3.29	3,29 3,29	5,51 8,80	7,77 16 57	16,57	16 57	5 18 21 75	0 35 22 10	0,07 22 17	5,60 22,17	19,10	
1	VALOR DOS CUSTOS TOTAIS (Médios)	5 46	4,07	10,20	11 79	17 48	39.48	10 37						
	VALOR DOS CUSTOS TOTAIS (Médios Acumulados)	5 46	9 53	9,53	21 32	38 81	39,48	20.24	16 13	4 72	13 67	34,52	55,12	
	CUSTO DE OPORTUNIDADE DAS PERDAS DAS BARRAGENS	346	9 53	a,53	21 32	36 81	35,81	38 81	54 94	59 65	73 32	73,32	55,12	
	RELATIVAS AO RESARCIMENTO DAS OBRAS	8 166,20	1 741,77	6 432,12	2 402 44	40.745.40	47.749.44		20 204 44					
	VA DOS CUSTOS GLOBAIS (Médios Acumulados)	181 378,95	130 788,80	329 994,17		10 715,19 565 147,32	17 342,14		39 061,11	8 567,49	2 278,66	72 976,27	90 318,41	
racro sula	AL DOS COSTOS GLOGAIS (MEGIOS ACUMUISIGOS)	1013/0,35	130 /55,50	329 994,17	3/6 2/0,94	505 147,32	1 269 414,83		270 950,40	76 347,86	198 752,16	569 119,43	1 838 534,26	

CAPÍTULO 3: ESTUDOS DE ALTERNATIVAS DE AJUSTE DO TRAÇADO DO ANTEPROJETO ÀS CONDIÇÕES ATUAIS

3 1 - ALTERNATIVAS DE AJUSTES TRECHO 1 AS CONDIÇÕES ATUAIS DO PROJETO

3 1 1 - ALTERNATIVAS DE AJUSTE DO TRAÇADO GLOBAL DO TRECHO 1

Com base na análise detalhada que se fez do traçado do Anteprojeto e no reconhecimento de campo, conclui-se que a transposição a partir do braço Assunção deverá sempre utilizar, total ou parcialmente, o caminhamento definido no Anteprojeto para o Trecho 1, não existindo necessidade de se reestudar alternativas globais de traçado para este trecho

Estudando-se detalhadamente o traçado original tanto nas cartas 1 25 000, como nas faixas que cobrem a diretriz geral na escala 1 10 000, observou-se que, na quase totalidade das situações, os "pontos de sela" ou trechos têm características identificadas como favoráveis à transposição das elevações, com canais mais profundos, deverão permanecer com locação inalterada. Os ajustes quando viáveis técnico-econômicamente, deverão se restringir à travessia dos vales com canais de encosta objetivando-se eliminar barragens, reduzindo-se a inundação de terras, deslocamento de populações e interferências com infra-estrutura existente

3 1 2 - ALTERNATIVAS DE AJUSTES LOCALIZADOS CANAIS DE ENCOSTA X BARRAGENS DO ANTEPROJETO

Considerando-se, portanto, a premissa de se basear sempre na diretriz do projeto original, procedeu-se aos estudos de alternativas para ajuste do traçado às reais condições do novo projeto, substituindo-se as barragens por canais nas travessias dos vales

Para fins de comparação dos custos dos trechos ajustados com canais, de novas dimensões, com o das barragens previstas no Anteprojeto, adotou-se a mesma metodologia, parâmetros básicos e custos unitários do Anteprojeto ou do Estudo de Alternativas, fazendo-se no entanto, as devidas adaptações e redimensionamento de seções e obras tipo, visto que os canais deverão conduzir, vazões menores que às do projeto original

A declividade média adotada para dimensionamento das seções e desenvolvimento dos novos traçados foi de 0,1 m/km, que é um pouco superior à declividade média global do projeto original que é de 0,07 m/km.

No Quadro 3 l apresenta-se para o Trecho 1, os valores atualizados dos custos das alternativas de canais, comparados com os das respectivas barragens, que poderão ser substituídas

No Mapa 2, Lay-Out Geral do Anteprojeto e Alternativas de Ajuste de Traçado - Anexo 1 1 e no Anexo 1 2 - , Lay-Out's das Alternativas de Canais x Barragens do Anteprojeto, podem ser observados os traçados alternativos a todas as barragens previstas no Anteprojeto

Conforme consta no Quadro 3 1, foram analisadas 16 barragens no Trecho 1

QUADRO 3.1 TRECHO 1: São Francisco - Jati Análise Comparativa de Custo das Alternativas Barragens X Canais de Encosta

Sub-Trecho 1: (Braço Assunção + São Francisco) / Terra Nova Sub-Trecho 2: Terra Nova / Salgueiro (PE)

		Qì	nicial = 70 (m3/s) Qm	ax = 80(m3	Ms)				m3/s) Qma	x = 165 (m					Qinicial =	55 (m3/s)	Qmax = 1	65 (m3/s)			:	Total (Sub.1+2+3)
	1 BARRO	2 ANGICO	3 MARIA	4 MARÍ	5 TERRA	5 R TERRA	SUB TOTAL 1	6 PORTELA	7 BARRA	8 MANGUEIR	8 R MANGUEIR	SUB- TOTAL 2	9 NEGREIROS	10 CERRADO	11 TANAJURA	12 SAÚVA	13 SEVERINO	14 PADRE	15 ÁGUA	16 MILAGRES	16 R MILAGRES	SUB- TOTAL 3	
Descrição	VERMELHO		PRETA		NOVA	NOVA(RED.)	(1 + 5)	CICROSON AAA	ļ		(RED.)	(6 a 8)			6713,330			CÍCERO	BENTA		(RED.)	(9 a 15)	
1 - Custo da Obra da Barragem	2.870,11	1.747,02	2.583,48	1.234,88	5.522,28	2.000,00	13.957,75	4,720,64	2.316,85	3.465.24	1.000,00	10,502,73	1.050,92	3,075,72	1,023,40	1.459,08	3.094,58	3.102,84	350,61	4.413,00	2.000,00	17.570,15	42.030,62
2 - Custo da Desapropriação Nov/83 (US\$ x 10²)	135.78	34,62	45,23	15,76	1.316,00	565,00	1.547,39	39,88	48,79	94,00	47,00	180,67	28,74	32,58	8,56	22,43	93,54	13,39	8,71	171,99	42,75	379,94	2.108,01
3 - Custo do Reassentamento	844,00	160,00	154,00	49,00	2,260,00	1,100,00	3.267,00	112,00	123,00	360,00	180,00	595,00	119,00	109,00	21,00	35,00	587,00	49,00	24,00	660,00	220,00	1.604,00	5,466,00
4 - Custo de Remanejamento e Interferências	. (dill - 11. 117						:	100 100 72525 725							incie in	-	n Californ						<u> </u>
5 - Custo Total de investimento da Barragem	3.649,89	1,941,64	2.782,69	1.299,64	9.098,28	3,685,00	18.772,14	4,872,52	2.455,64	3.919,24	1.227,00	11.278,40	1.198,86	3.217,31	1,052,98	1.516,51	3.775,12	3.165.23	383,32	5.244,98	2.262,75	19,554,09	49.604,63
6 - Custo dos Canais entrada e Saída	4.118,93	1.776,80	2,681,83	1.505,06	3.348,98		13.429,60	2,788,09	906,61	826,09	3,411,73	4.520,79	1.012,43	732,72	1,185,70	473,00	900,60	1,471,11	280,04	263,34	8.889,00	6.318,94	24.269,33
7 - VA dos Custos Totais de Investimento	9,223,14	4.414,53	6.487,48	3,329,74	14.775,01	4.351,09	38.229,90	9,094,67	4.028,46	5,633,88	5.507,10	18,756,79	2.625,01	4.689,47	2.857,74	2.361,95	5,551,01	5.504,28	787,54	6.539,48	13.239,38	30.716,46	87.703,16
8 - VA dos Custos de OPM das Barragens + Canal	575,90	290,36	433,86	225,77	730,83	164,80	2.256,72	618,72	285,61	353,61	363,53	1.237,94	170,82	313,82	182,03	159,20	329,20	378,89	51,97	385,33	897,25	1.968,46	5,463,12
9 - Custo da Água do Enchimento Incial (US\$ x 10²)	368,76	79,68	96,14	26,34	1.181,35	480,95	1.752,27	202,09	274,27	808,36	346,44	1.284,72	464,46	432,80	137,23	4 84,73	2,533,44	178,40	58,59	2.929,29	633,35	6.918,93	9.955,91
10 - Custo Anual Água Evaporada	151,56	37,68	36,24	11,53	508,07	247,29	745,07	55,19	60,62	177,41	58,40	293,22	105,96	96,48	18,59	30,98	519,57	42,85	20,99	577,21	192,40	1,412,62	2.450,92
11 - VA dos Custos Totais de Enchimento e Evaporação	1.617,65	389,96	394,79	121,36	5.367,89	2,498,65	7.891,65	858,90	773,74	2,270,23	1.074,87	3.700,87	1,337,55	1.227,78	290,39	440,00	5.814,65	531,51	231,54	7.685,52	2.218,77	18.558,95	30.151,47
12 - VA dos Custos Totais da Alternativa Barragem	11,415,68	5.094,85	7.316,13	3.676,88	20.873,73	7,014,53	48,378,27	10.370,29	5,067,81	8.257,50	6,945,50	23,695,60	4.132,58	6,231,06	3,130,16	2,961,15	12.694,88	6,412,66	1.071,05	14.610,33	18.355,38	51.243,88	123.317,75
ALTERNATIVA EM CANAL E/OU BARRAGEM REI	DUZIDA		,																				
13 - VA da Variante da Barragem Réduzida	<u> </u>				7.014,53			٠	MATERIAL PROPERTY OF THE PROPE					irtigani.	<u> </u>								
14 - Custo de Investimento da Obra de Canais	5.083,61	4.776,92	8,655,27	3.201,50	10.225.00		29.942,30	4.031,45	4,471,00			8,502,45	4.812.75	3,508,80	1.101,54	1,377,27	3.053,40	3.357,00	1,233,70			18.444,46	56.889,21
15 - Custo dos Sifőes/Aquedulos	5.317,40				10.671,00		15.988,40	<u></u>					1000	3,039,00	1.303,00	2,170,00	3,907,00					10.419,00	26.407,40
16 - VA do Custo de Investimento	10.158,99	5.836,77	7,853,22	3,777,77	20.414,49		47.841,24	4,757,11	5.275,78	in in the		10.032,89	5.879,05	6.518,10	2.319,28	3,322,99	8,859,85	3.961,26	1.455,77			29.916,29	87.790,42
17 - VA dos Custos OPM	576,82	383,52	548,39	263,80	1.159,47		2.942,10	332,19	388,41			700,60	396,57	379,38	129,47	177,94	387,64	278,62	101,68			1.829,27	5.471,97
18 - VA dos Custos Totals	10.735,81	8.030,38	8.401,61	4,041,57	21.573,96		50.783,34	5.089,30	5,644,19	6,931,35		17,664,84	5,075,62	6,897,48	2.448,75	3,500,92	7.027,49	4.237,88	1,557,42	16,334,78		48.080,34	116.528,52
									_								_						
	BARRO VERMELHO	ANGICO	3 MARIA PRETA	4 MARÍ	5 TERRA NOVA	5 R TERRA NOVA(RED.)	SUB TOTAL 1 [1 a 5]	6 PORTELA	BARRA	8 MANGUEIR	8 R MANGUEIR (RÉD.)	SUB- TOTAL 2 (6 a 8)	9 NEGREIROS	10 CERRADO	11 TANAJURA	12 SAUVA	13 SEVERINO	14 PADRE CÍCERO	15 ÁGUA BENTA	16 MILAGRES	16 R MILAGRES (RED.)	SUB- TOTAL 3 (9 a 16)	TOTAL
Relação Custo Canal / Barragem (Custo Alual)	94,04	118,38		109,92			104,97	49,08	111,37	63,94		74,55	147,02	110,70	78,23	118,23	55,36	66,09	145,41	111,60	<u> </u>	93,83	94,49
Justificativa da Decisão de Manter, Reduzir ou Eliminar a Barragern	Elminada	Mantida	Mantida	Mantida	Mantida	Afternativa Descartada		Eliminada	Mantida	Reduzida	Mantida Reduzida		Mentida	Mantida	Elminada	Mantida	Eliminada	Eliminada	Mantida	Mantida	Alternativa Descartada		
C - Critério de Custo: Eliminar se Alternativa superior a 110% da Barragem OP - Necessidade p/Operação de Etavatória ou Compensação de Vazões	С	с	С	С	C OP	<u>-</u>		С	С	-	C OP		С	С	С	С	С	c	С	o P		-	-

CONCLUSÃO:

Barragens Eliminadas: 5
Barragens Reduzidas: 1
Barragens Mantidas: 10
Total do Anteprojeto: 16

102

SHILLO

Sub-Trecho 3; Salgueiro / Jati (CE)

Na seleção de cada alternativa foram considerados os condicionantes técnicoconstrutivos e operacionais e decidiu-se, em razão dos sérios problemas sócio-ambientais decorrentes das inundações das barragens, que estas só deveriam ser mantidas, se o valor atual (à taxa de 12% a a) dos custos dos canais fosse superior a 10% ao da barragem

Das 16 barragens estudadas, 5 foram eliminadas, 1 foi reduzida e 10 foram mantidas

Deve-se observar, que a barragem Mangueira que foi reduzida, poderia, em termos de custos, até ser eliminada, mas em razão das vantagens operacionais que apresenta para o funcionamento da elevatória Salgueiro, decidiu-se mantê-la de forma reduzida, conforme alternativa de deslocamento de seu eixo de barramento, que permitiu a redução da área inundada de 360 ha para 180 ha

32 - ALTERNATIVAS DO TRECHO 2

- 3 2 1 ALTERNATIVAS DE AJUSTE DO TRAÇADO GLOBAL AS NOVAS OPÇÕES DE CAPTAÇÃO X TRAÇADO PARA A TRANSPOSIÇÃO SALGADO PIRANHAS APODI
- 3 2 1 1 Considerações Gerais Sobre as Alternativas Estudadas no Anteprojeto para o Trecho 2

Conforme mostrado anteriormente, a exclusão da barragem Aurora implica na necessidade de estudos de opções de captação e que, consequentemente, deverão ser compostas parcialmente com o traçado original, gerando assim novas alternativas globais para o trecho 2

Para se ter um melhor conhecimento das possíveis alternativas de captação, analisou-se, sobre as cartas 1 100.000 e 1 25 000, três sítios de captação no Salgado, que cobrem todas as possibilidades de variações de locais, tipo de obra e traçado para se atingir obrigatoriamente a localidade de Bom Jesus IV, com a vazão máxima de 85 m³/s, para neste ponto estratégico ser dividido com 35 m³/s para o sistema Piranha - Açu e 50 m³/s para o Apodi

Dos três sítios analisados, o primeiro denominado de Alternativa AC2-A - Captação no Barramento Aurora se localiza nas proximidades do Barramento Aurora (Anteprojeto)e os outros dois, AC3-JA - Captação à Jusante do Barramento Aurora e AC1-MA - captação à Montante do Barramento Aurora, se situam, respectivamente, em linha reta a 17 km e 23 km do local do Barramento Aurora.

A concepção e os dados básicos dessas três alternativas são a seguir apresentadas; sua visualização espacial e comparação com o Anteprojeto, podem ser vistos através dos seguintes desenhos

Mapa 2

⇒ Lay-Out Geral do Anteprojeto e Alternativas de Ajuste de Traçado - Anexo 1 1 (escala 1 100 000),

Figura 3 1 ⇒ Planta e Perfis das Alternativas de Captação no Salgado AC1-MA (montante Aurora) e AC2-A (local Aurora),

Figura 3 2 ⇒ Planta e Perfis da Alternativa de Captação no Salgado. AC3-JA (jusante Aurora) e Variantes de Otimização

Pela análise do lay-out final do Mapa 2 pode-se observar que a partir da barragem Umburanas as três alternativas (AC1-MA, AC2-A e AC3-JA) têm traçados coincidentes

Em razão de tal condição, as alternativas foram concebidas, considerando-se o final dos três traçados na chegada da barragem Umburanas

3 2 1 2 - Descrição e Dados Básicos das Alternativas

a Alternativa AC1-MA - Captação à Montante do Barramento Aurora (Figura 3 1)

O objetivo principal desta alternativa consistiu na verificação da possibilidade de se manter a derivação gravitária para a transposição, substituindo a barragem de Aurora por uma barragem apenas de derivação situada aproximadamente à 17 km do local Aurora, alimentaria, gravitariamente, na cota 310 m, um canal de aproximadamente 24,7 km de comprimento que se desenvolveria pela encosta direita, para em seu final alimentar a barragem Aurora I na cota 307,5 m, a partir de onde o projeto continuaria com sua diretriz original com os devidos ajustes.

Altimetricamente, esta solução se evidenciou como possível, em razão da forte declividade dos vales do Salgado e do Riacho dos Porcos, que adicionada à elevação de uma soleira de aproximadamente 8,0 m, permitiria se atingir gravitariamente o início do canal do Anteprojeto Tal barragem teria as seguintes características:

Cota mínima do leito no barramento = 302,50 m Altura máxima = 8,0 m Soleira vertedoura = 310,50 m NA mínimo operacional = 310,00 Vazão máxima a derivar = 85 m³/s + 4 m³/s (de perdas)

b Alternativa AC2-A - Captação no Barramento Aurora (Figura 3 1)

A obra de captação, composta de uma estação elevatória associada à soleira de elevação de nível, seria localizada preferencialmente à jusante do eixo barrável definido no Anteprojeto, de tal forma que, futuramente não haja interferência, ou maiores problemas, de interferência construtiva, se for tomada a decisão de construir a barragem Aurora, seja para atender às necessidades do Estado do Ceará, ou mesmo para ampliação do Projeto de Transposição

A manutenção do local de captação nas proximidades do barramento Aurora permitiria se manter a diretriz geral do Anteprojeto, fazendo-se necessário alguns ajustes, como a previsão de um trecho inicial de 3,00 km de canal na encosta, para interligação com a barragem Aurora I com NA na cota 307,50 m (reservatório de transposição não eliminado)

A localização da elevatória, o desenvolvimento do canal e os dados básicos apresentados, foram definidos com base no Anteprojeto e nas cartas 1 10 000 e 1 25 000 Os lay-out's do traçado original, e das alternativas e ajustes propostos, foram transpostos para a carta 1 100 000

Os dados abaixo mostram as principais características desta alternativa

b.1 Barragem Aurora conforme Anteprojeto existente

Cota mínima do leito no barramento = 272,00 m

Cota coroamento $\approx 327.00 \text{ m}$

Altura máxima = 55,00 m

Soleira vertedoura = 320,00 m

Soleira na tomada d'água = 282,00 (10 m do fundo)

NA mínimo operacional = 307,30

NA mínimo = normal a jusante = 274,50 (Q m³/s = 85 + 4 perdas).

NA máx a jusante = 288,20 (Q = 6 192 m³/s - TR. 1/10 000)

b.2 Dados Básicos preliminares da possível elevatória em Aurora, que resolveria a situação ora estudada, sem necessidade da barragem Aurora

TN minimo = 272 m

Cota da soleira vertedoura = 272,00 + 6,00 = 278,00 m

Nível d'água no canal = 307,80 m

ANA (desnível geométrico) = 307.80 - 278.00 = 29.80 m c.a

Comprimento da adutora L = 300 m

AMT = 29,80 + 2,50 (perdas) = 32,30 m c a.

Vazão máx = 85 m³/s + 4 m³/s (de perdas) = 89 m³/s
Pot EB (KW) =
$$\left(\frac{32,30 \times 89 \times 10^3}{75 \times \eta_b \times \eta_m}\right) \times 0,736 = 33,82 \text{ MW}$$

b.3 Dados Básicos do canal de ligação da elevatória com a Barragem Aurora I

Nível mínimo na Barragem Aurora I = 307,00 m

Nível máximo de chegada na Barragem Aurora I = 307,50 m

Comprimento do Canal = 3.0 km

Declividade adotada = 0,10 m/km

Seções tipo adotada = as do Anteprojeto com ajustes dimensionais

Nível no mício do canal = 307,50 + 0,30 = 307,80 m

c Alternativa AC3-JA - Captação à Jusante do Barramento Aurora (Figura 3 2)

O local escolhido sobre as cartas 1 25.000, para caracterizar as possíveis soluções de captação à jusante da barragem Aurora se situa, aproximadamente, à 23,00 km do citado barramento Tal escolha se justifica em razão da existência da elevação Serra da Várzea Grande, que se desenvolve por 20 km na direção Oeste-Leste, partindo da margem direita do rio Salgado na cota 300,00, com disposição favorável, que permite uma ligação, praticamente direta, com o canal do Anteprojeto que passa em seu outro extremo, na barragem Umburanas

Da mesma forma que a alternativa AC2-A - Captação no Barramento Aurora, a obra de captação será composta de uma soleira de elevação de nível e uma estação de bombeamento alimentando um sistema de adutoras em paralelo, com comprimento máximo de 500 m, até o início de um possível canal, este canal com 21,7 km interceptaria o traçado do Anteprojeto, já no km ± 40,40, mais precisamente no local onde estava prevista a citada barragem Umburanas

Deve-se observar que estes 40 km de canais eliminados correspondem ao trecho onde o relevo apresenta maiores dificuldades para o ajuste de traçado, pois nele se localizam as quatro maiores barragens de transposição de vales, que, conforme já analisado, causam grandes perdas por evaporação

As principais características das obras desta alternativa são apresentadas a seguir.

c 1 Dados Básicos preliminares da possível elevatória a jusante de Aurora

Cota da soleira vertedoura = 245,00 + 5,00 = 250,00 m Nível d'água no canal = 303,00 m ANA (desnível geométrico) = 303,00 - 250,00 = 53,00 m c a Comprimento da adutora L = 300,00 m AMT = 53,00 + 2,50 (perdas) = 55,5 m c a Vazão máx. = 85 m³/s Pot EB (KW) = $\left(\frac{55,50 \times 85 \times 10^3}{75 \times \eta_b \times \eta_m}\right) \times 0,736 = 55,50 \text{ MW}$

c.2 Dados Básicos do canal de ligação da elevatória a jusante de Aurora

Nível de chegada na Barragem Umburanas = 301,90 m Comprimento do Canal = 21,0 km Declividade adotada = 0,10 m/km Seções tipo adotada = as do Anteprojeto com ajustes dimensionais Nível no final do canal = 301,90 + 2,10 m = 303,00 m

3 2 1.3 - Análise Técnica Financeira das Alternativas

No Quadro 3 2a, consta a consolidação de todos os custos das três alternativas, tendo-se como resultado principal o parâmetro de custo médio de bombeamento (item - 5 - Custo

22,44

6,46

9,13

28,11

5,80

5.80

5,80

QUADRO 3.2a

ALTERNATIVAS DE TRANSPOSIÇÃO SALGADO - PIRANHAS - APODI (Após a Eliminação da Barragem Aurora)

Alternativa AC1-MA - Captação Aurora Montante (Derivação Gravitária: Q = 85 m3/s + 4m3/s de perdas)

(Incluida Vazão Média Equivalente ao Enchimento) Consolidação dos Custos Atualizados e Custos Médios do m3 Transposto

Investimento Operação e lovestimento Manutenção US\$ x 10^3 Energia US\$ x 10^3 US\$ x 10^3 OPM + Energia Total US\$ x 10^3 implantação 3.000,00 3.561,60 245,27 245,27 3,806,87 1 Barragem de Derivação do Rio Salgado 2 Estação Elevatória 68.955,02 64.512,45 4,442,57 4.442,57 54 340 00 3 Canal Complementar 4 Sistema Canais e Barragens 94.326,50 6,077,18 88.249,32 6.077,18 74.334,00 Canais + Barragem (Obra) 45.505,00 21.149.00 45,505,00 24.356.00 Custo da Evaporação e Enchimento (*) 1.916,00 1.528.00 1.916,00 Desapropriações e Interferências 3 376.00 3.376,00 - Reassentamento de Famílias 3.000,00 217.885,39 35,121,01 56,270,01 21,149,00

136.202,00

14,03

0,56

2,81

14.03

Sub-Total (1 a 4)

8 Fator de Elevação dos Cust.de Energ. 3,6 p/igualar os Custos M.

5 Custo médio desta etapa de transposição (US\$/10^3 m3)

7 Tarifa c/Recuperação de 20% do Investimento

6 Recuperação de 4% do Investimento p/Igualar ao Custo A1

Alternativa AC2-A - Captação Aurora Anteprojeto (Elevatória: Q = 85 m3/s + 4 m3/s de perdas e AMT = 33 m.c.a.)

(Incluida Vazão Média Equivalente ao Enchimento)

161.615,37

16.65

0,67

3,33

16.65

2,18

2,18

2.18

7,84

3.62

3,62

3.62

3.62

Consolidação dos Custos Atualizados e Custos Médios do m3 Transposto

		ľ		(Custos Atualizados		
		Investimento Na Implantação	Investimento US\$ x 10^3	Operação e Manutenção US\$ x 10^3	Energia US\$ x 10^3	OPM + Energia	Total US\$ x 10^3
1	Barragem de Derivação do Rio Salgado	3.000,00	3.561,60	245,27		245,27	3.806,87
	Estação Elevatória	31.084,00	26.274,68	3.860,24	32.112,00	35.972,24	62.246,91
3	Canal Complementar	4.972,00	5.902,76	406,49		406,49	6.309,24
_	Sistema Canais e Barragens						
	- Canais + Barragem (Obra)	74.334,00	88.249,32	6.077,18		6.077,18	94.326,50
	- Custo da Evaporação e Enchimento (*)			24,356,00	21,149,00	45.505,00	45,505,00
	- Desapropriações e Interferências	1,528,00	1.916,00				1.916,00
	- Reassentamento de Familias	3.000,00	3.376,00				3.376,00
	Sub-Total (1 a 4)	117.918,00	129.280,36	34,945,17	53.261,00	88.206,17	217.486,53
	Custo médio desta etapa de transposição (US\$/10^3 m3)	12,15	13,32	3,60	5,49	9,09	22,40

^(*) Custo das perdas no trecho São Francisco - Jati, no OPM estão incluídos os custos de amortização das obras

Alternativa AC3-JA - Captação Aurora Jusante (Elevatória de Q = 85 m3/s e AMT = 55 m.c.a.)

Consolidação dos Custos Atualizados e Custos Médios do m3 Transposto

	Î			Custos Atualizados		
	investimento Na Implantação	Investimento US\$ x 10^3	Operação e Manutenção US\$ x 10^3	Energia US\$ x 10^3	OPM + Energia	Total US\$ x 10^3
1 Barragem de Derivação do Rio Salgado	3,000,00	3.561,60	245,27		245,27	3.806,87
2 Estação Elevatória	49,480,00	41.824,32	6.144,77	46.785,00	52.929,77	94.754,09
3 Canal Complementar	42,000,00	49.862,40	3.433,71		3.433,71	53.296,11
4 Sistema Canais e Barragens						
- Canais + Barragem (Obra)						
- Custo da Evaporação e Enchimento						
- Desapropriações e Interferências						
- Reassentamento de Famílias						
Sub-Total (1 a 4)	94.480,00	95,248,32	9.823,75	46.785,00	56.608,75	151.857,07
5 Custo médio desta etapa de transposição (US\$/10^3 m3)	9,73	9,61	1,01	4,82	5,83	15,64
6 Recuperação de 4% do investimento p/igualar ao Custo A3	0,39	0,39	1,01	4,82	5,83	6,22
7 Tarifa c/Recuperação de 20% do investimento	1,95	1,96	1,01	4,82	5,83	7,79
8 Fator de Elevação dos Cust.de Energ. 3,6 p/lgualar os Custos M.	9,73	9,81	1,01	17,35	5,83	28,17
Diferença (A3 - A1)	-41,722,00	-66.367,05	-25.297,27	25.636,00	338,73	-66.028,32
9 Relação % (A3 / A1)	69,37	58,94	27,97	221,22	100,60	69,70
Diferença dos Custos Médios por 10^3 m3	-4,30	-6,84	-2,61	2,64	0,03	-6,80

^(*) Custo das perdas no trecho São Francisco - Jati, no OPM estão incluídos os custos de amortização das obras

Médio desta etapa de Transposição), com a discriminação de seus componentes relativos aos investimentos, energia, operação e manutenção

Em razão da alternativa A2 - Captação no Local Aurora/Anteprojeto não apresentar nenhuma vantagem financeira ou operacional, sobre as outras duas (A1 e A3), decidiu-se exclui-la desta análise técnico-financeira.

A seguir apresenta-se as vantagens da alternativa A3, com bombeamento, sobre a alternativa A1, com derivação gravitária, tanto sob o ponto de vista técnico, como financeiro

a - Vantagens da Alternativa A3 Sobre a Alternativa A1 na Construção e Operação

Eliminação de 40 km do sistema adutor previsto no Anteprojeto, misto de canais de ligação + 2 túneis + 5 barragens, que inundariam 5.000 ha, com volume total de $450 \times 10^6 \text{ m}^3$

Eliminação do canal complementar de 24,71 km, em meia encosta, com bastante dificuldades construtivas e de drenagem

Evitaria a necessidade de reassentamento de no mínimo, 300 famílias que sobrevivem atualmente nos 5 000 ha dos vales Aurora I, Antas, Tipi, Pau Branco e Jitirana.

Evitaria sérios problemas ambientais gerados pelas sucessivas barragens, que provavelmente, teriam suas áreas de desapropriação elevadas para aproximadamente 7 000 ha, com a previsão da faixa de 200 m para preservação ambiental.

Eliminaria dois túneis de ligação de barragens, com comprimento total de 2,74 km, que são obras com maiores dificuldades construtivas que simples canais

Reduziria consideravelmente os problemas operacionais de manutenção das barragens com o nível máximo permanente. Simplificaria também, a operação do sistema de canais do trecho, reduzidos de aproximadamente, 65 para 22 km

Eliminaria perdas do enchimento evaporação, equivalentes a, aproximadamente 4,0 m³/s (2,0 m³/s para evaporação e ± 2 m³/s equivalente ao volume de enchimento inicial) de vazão contínua, que deverão ser acrescidas nos custos da transposição do Salgado para Piranhas - Apodi (85 m³/s + 4 m³/s = 89 m³/s) Tais perdas trariam mais dificuldades na discussão da vazão máxima a ser retirada do rio São Francisco

Eliminaria a inundação de linhas elétricas de alta e média tensão, que recentemente foram implantadas pelo Estado do Ceará e DNOCS nos vales que seriam inundados

Evitaria a inundação da estrada estadual que dá acesso à cidade de Aurora a partir da BR-116.

b Vantagens Financeiras da Alternativa A3 Sobre a Alternativa A1

Menor custo de investimento inicial e financeiro, com vantagens de US\$ 66,37 x 10⁶, que poderão ser investidos em projetos de irrigação (± 12 000 ha de infraestrutura principal) ou nas obras complementares do Sistema Apodi.

Menor custo médio global atualizado (A3-A1 \Rightarrow 15,64 - 22,44 = -6,80, item 5), com praticamente, o mesmo custo de OPM + Energia (A3 = 5,83 e A1 = 5,80, item 5)

De tal condição, se conclui que na definição da tarifa d'água, mesmo existindo a desvantagem da A3, no pagamento da conta de energia (A3 ⇒ 4,82 contra A1 ⇒ 2,18 US\$/10³ m³ pelas perdas), a tarifa da A3, somente superaria a da A1, se o investimento a fundo perdido fosse superior a 96% dos custos de implantação (Veja item - 6 - Tarifas se igualam em ≈ 6,42 US\$/10³ m³, quando a recuperação dos investimentos se reduz apenas 4% do total)

No que se refere ao possível aumento no custo da energia (considerado igual US\$ 28 / MW x h), verifica-se que deverá atingir 3,6 vezes o custo atual para que o custo médio global da A3, se iguale ao da A1 (veja item 6, custo A1 \Rightarrow 28,11 \approx A3 \Rightarrow 28,17)

Aında em relação as contas de energia, verificou-se que a diferença do custos totais de investimento (66,367 x US\$ / 10³, item 9), seria suficiente para o pagamento do acréscimo do custo de energia, da A3 relativo ao da A1 (A3-A1 ⇒ 25,636), pelo período de aproximadamente 90 anos, que corresponde a 2,6 vezes a vida útil do projeto, considerada igual a 35 anos, nesta análise.

No caso de financiamento internacional, com limite mínimo de 20% para recuperação dos investimentos (com 80% a fundo perdido) a tarifa da A3 ainda seria menor que da A1 (item 7; A3 ⇒ 7,79 e A1 ⇒ 6,46)

3 2 1 4 - Estudos de Otimização da Alternativa Selecionada Captação à Jusante de Aurora - AC2-JA

Os resultados dos estudos de alternativas de captação e Transposição Salgado foram apresentados em forma de "Nota Técnica" e discutidos com a coordenação geral e técnicos do grupo de trabalho do Ministério da Integração Regional, que são os responsáveis pelo detalhamento do Projeto Básico da Transposição do Rio São Francisco

A alternativa AC3-JA - Captação à jusante do barramento Aurora foi então, selecionada definitivamente para fins de locação em campo e detalhamento.

Ao se dar prosseguimento à definição mais detalhada dos locais da barragem e da elevatória, verificou-se, que em razão da grande declividade e sinuosidade do curso do no Salgado, deveriam ser analisadas pelo menos 3 variantes de locais para a captação

Na Figura 3 2 são mostrados os lay-out's e os perfis das três variantes

No Quadro 3 2b são apresentados, para fins de análise comparativa, todas as características e dados básicos dos custos de investimento, operação manutenção e energia, com seus valores atualizados para toda a vida útil do projeto.

Com base nos elementos disponíveis (carta 1/25 000) selecionou-se a variante V1-AC3-JA, situada mais à montante, que apresenta menor custo atualizado e menor altura de bombeamento

O resultado dos estudos e análise mais detalhada da localização da captação veio confirmar o custo da alternativa selecionada que foi estimado inicialmente em US\$ 94.480,00, diferindo apenas de 1,35% do custo da variante final selecionada, que importou em US\$ 93 217,00

3 2 2 - ALTERNATIVAS DO AJUSTES LOCALIZADOS CANAIS DE ENCOSTA X BARRAGENS DO ANTEPROJETO

Considerando os mesmos dados básicos, parâmetros e a metodologia adotada para análise do ajuste do traçado do Trecho 1, fez um estudo de alternativas de traçado, de canais x barragens, cujo custos são comparados no Quadro 2 2, e traçado são apresentados, em planta, no anexo 1.2 - Lay-Out das Alternativas de Canais x Barragens do Anteprojeto

Para análise técnico-econômica do estudo de alternativas, conclui-se que do total de 19 barragens previstos no Anteprojeto, apenas 4 deveriam ser mantidas. (Veja quadro 3 3) Destas, 2 foram mantidas por critérios de custos (Santa Helena e Bom Jesus VII) e 2 outras por necessidade operacional. A barragem Umburanas para controle da nova estação de bombeamento no rio Salgado e a Bom Jesus IV, porque é o local de derivação para a Lagoa do Arroz

Quanto às 5 barragens (Aurora I, Autos, Tipi, Pau Branco e Jitirana), do sub-trecho inicial, que se prolonga do local da barragem Aurora eliminadas, até a barragem Umburanas, constatou-se que, independentemente do resultado do estudo de alternativas de trechos localizados, elas deveriam ser eliminadas em razão dos resultados dos estudos de alternativas de captação no Salgado O estudo de alternativas indicou a solução de uma estação de bombeamento, a 22 km à jusante do local do barramento Aurora, portanto desviando totalmente o traçado da diretriz original, que engloba as citadas barragens

Com a eliminação das 15 barragens, a área inundada foi reduzida de 6.361 ha para 78 ha e as perdas por evaporação de 2,6 m³/s para 0,15 m³/s, conforme pode-se observar pela comparação dos quadros 2 2 x 4 3a, onde também, podem ser comparados outros parâmetros básicos que indicam, claramente, as vantagens da eliminação das barragens

QUADRO 3.2b

Dados Básicos e Custos das Variantes da Alternativa AC3-JA - Captação a Jusante de Aurora e para Transposição Salgado - Piranhas -Apodi

Variante 1

Captação Aurora Jusante (Elevatóna de Q = 85 m3/s e AMT = 55 m c a) Consolidação dos Custos Atualizados

				с	ustos Atualizado	<u> </u>	
Cota da Soleira 250,00	Dados Básicos	investimento Na	Investimento US\$ x 10^3	Operação e Manutenção	Energia	OPM + Energia	Total
NA Máx 262,00		Implantação		US\$ x 10^3	US\$ x 10^3		US\$ x 10^3
1 Barragem de Derivação do Rio Salgado	Alt = 5m	3 500 00	4 155 20	286 30		286 30	4,441,50
2 Canal de Aproximação	0 76 km	2 216 00	2 530 84	181 27		181 27	2 812,10
3 Estação Elevatóna	85 m3/s	44 000 00	37 193 20	5 464 80	46 785 00	52.249 80	89 443,00
4 Adutora	0 20 km	5 088 00	4 300 89	631 93	·	631 93	4 932,82
5 Canal de Encosta	21,66 km	38 413 00	45 603 91	3 142 18		3 142 18	48 746,10
Total		93 217,00	93.884,04	9 706,48	46 785,00	56.491,48	160 375,62

Variante 2

Captação Aurora Jusante (Elevatória de Q = 85 m3/s e AMT = 58 m c a)

Consolidação dos Custos Atualizados

				с	ustos Atualizado	<u> </u>	
Cota da Soleira 246,70	Dados Básicos	investimento Na Implantação	investimento US\$ x 10^3	Operação e Manutenção US\$ x 10^3	Energia US\$ x 10^3	OPM + Energia	Total US\$ x 10^3
NA Máx 248,70	Alt = 5 m	3 500,00	4 155 20		033 X 10-3	286 30	4.441,5
1 Barragem de Derivação do Rio Salgado					,		
2 Canal de Aproximação	0 09 km	370 00	439 26	30 27		30 27	469,5
3 Estação Elevatóna	85 m3/s	45 600,00	38 545 68	5 663,52	49 337,00	55 000 52	93 <u>546,2</u> 0
4 Adutora	0 15 km	3 816 00	3 225 6 6	473 95		473 95	3 699,6
5 Cenal de Encosta	21,27 km	38 038 00	45 158 71	3 111 51		3 111 51	48 270,2
Total		91 324,00	91 524,52	9 565,54	49 337,00	58 902,54	150.427,0
% (Relativo a Variante A)		97 97	97 49	98 55	105 45	104 27	100 0

Variante 3

Captação Aurora Jusante (Elevatória de Q = 85 m3/s e AMT = 64 m c a)

Consolidação dos Custos Atualizados

					ustos Atualizado	5	
Cota da Soleira 241,30 NA Máx 243.20	Dados Básicos	investimento Na implantação	Investimento US\$ x 10^3	Operação e Manutenção US\$ x 10^3	Energia US\$ x 10^3	OPM + Energia	Total US\$ x 10^3
1 Berragem de Derivação do Rio Salgado	Alt = 5 m	3 500,00	4 155 20			286 30	4.441,60
2 Canal de Aproximação	0 40 km	2 135 00	2 534 67	174 64		174 64	2.709,3
3 Estação Elevatóna - (4 x 21 25 m3/s)	85 m3/s	48 800 00	41 250 64	6 060 96	54 441 00	60 501 96	101 752,6
4 Adutora - (4 x DN 3000 mm x 5/8)	0,26 km	6 180 00	5 223,95	767 56		767 56	5 991,5
5 Canal de Encosta	18 32 km	29 632 00	35 179 <u>11</u>	2 423 90		2 423 90	37 603,0
Total		90 247,00	88 343,58	9 713,36	64,441,00	64.154,36	152,497,9
% (Relativo a Variante A)		96 81	94 10	100 07	116,36	113 56	101,41

Arq AK3_Vbr seb

QUADRO 3.3

TRECHO 2: Aurora - Major Sales (Transposição Salgado - Piranhas / Apodi) Análise Comparativa de Custo das Alternativas Barragens X Canais de Encosta

	Sub-Trecho 1: Aurora - Jilirana/Umburana Qinicial = 30, Qmax = 85								Qir	Sub nicial = 30 r	o-Trecho 2: n³/s; Qmax						Qinicial	Sub-Tre ≥ 15 m³/s	echo 3: ; Qmax = :	50 m³/s			
	1 AURORA I	2 AN ^T AS	TIPÍ	4 PAU	5 JITIRAHA	SUB-TOTAL 1	S UMBURANA	7 FELIZARDO	GACHIMBO I	9 CACHIMBO II	10 CACHIMBO III	11 BOM JESUS	12 BOM JESUS I	13 BOM JESUS III	14 BOM JESUS IV	SUB-TOTAL 2	15 BOM JESUS V	16 BOM JESUS VII	:	18 SANTA	1s POÇO	SUB-TOTAL 3	TOTAL
Cescrição	2114-81211202		Application of	BRANCO	-35 (5): 11 (6)	(1 a 5)	 	ere Bissaiul	i kari wasinin	e la company	mistaa bali	- Links and the line of		Land State of the	!	(6 a 14)	o congression can		HELENA	HELENA 11	aria in a	(15 ± 19)	(Sub.1+2+
- Custo da Obra da Barragem	3.465,88	6.155,01	12,246,45	1.734,93	10.404,52	34.007,79	2.228,87	2.870,84	2 724 75	1 979 82	1,509,76	708,77	1.245,8	-		16.496,98	1:185,58	535,44	514,27	666,40	659,40	3.561,08	\$4,065
? - Custo da Desapropriação Nov/83 (US\$ x 10°)	36,31	629,51	519,45	58,16	316,27	1.559,69	43,85	63,12	90,59	63,21	12 33	9.55	41 22	7,55	41,69	373,12	38,59	9,99	21,92	12,16	16,43	97,09	2.029
- Custo do Reassentemento	102,00	1.900,00	1.800,00	165.00	1 050,00	5.020,00	150,00	172.00	300,00	196,00	32,00	28,00	104,00	15,00	117,00	1,114,00	99,00	21,00	57,00	19 00	31,00	227,00	6.361
- Custo de Remanejamento e interferências	12 11 11 11 11 11 11 11 11 11 11 11 11 1		1,780,00			1.780,00		1.652.00	,	1.835,00						3.487,00			-				5.267
- Custo Total de Investimento da Barragem	3.604,19	8.685,52	16 345 90	1,961,08	11,770,79	42,367,48	2.422,72	4.557.90	3 115 34	4.074,03	1,554,09	746,32	1.391,00	714,18	2.895,40	21.471,10	1.321,17	566,43	593,18	697,56	705,83	3.885,17	67.723
5 - Custo dos Canais entrada e Salda		Chillian Mi		n die Ste	i wili		363,09	1,020,42	393,99	741,03	1.756,26	1,611,12	987,64	523 08	125,59	7.622,22	623,41	1.360,42	399,38	2.438,30	78,31	4.899,82	12,522
- VA dos Custos Totais de Investimento	4 278,89	10.311,45	19 405,85	2 328,20	13,974,28	50.298,67	3.307,31	6.622,66	4 156 27	5.716.44	3.930,05	2.798,76	2.823,99	1,587,59	3,586,52	34.539,59	2 308 61	2.287,56	1.178,37	3,722,89	932,12	10.429,54	95.267
- VA dos Custos de OPM das Barragens + Canal	285,59	507,26	1,009,11	142,96	857,33	2.802,24	213,58	304,16	256,98	224,20	269,12	191,16	184,04	108,33	235,85	1.987,42	149,06	156,22	75,28	255, 8 3	80,79	697,18	5,486
- Custo da Água do Enchimento Incial (US\$ x 10²)	677,43	9.290,40	15,019,48	960,01	8.825,88	34,773,19	966,49	774.05	1,522,43	872,41	95,79	85,53	333,57	51,32	598,71	5.300,29	569,19	81,00	268,18	62.39	91,95	1.072,71	41,146,
0 - Custo Anual Agua Evaporada	100,21	1.903,45	1,768,43	162,45	1.015,32	4.949 86	169,22	195,51	341,01	222,79	36,37	32,07	119,11	17,18	133,99	1.267,25	145,10	30,78	84,79	28,26	50,19	339,12	6.556
1 - VA dos Custos Totais de Enchimento e Evaporação	1.503,16	24.974,81	29,591,32	2,298.61	17 192 15	75,560,07	2.360,87	2.385,06	4 332,34	2 708 21	395,52	349,76	1.315.00	192,87	1.702,82	15.742,45	1764,83	334,62	966,85	295.28	505,48	3.867,07	95.169
12 - VA dos Custos Totais de Alterestiva Barragem	6,067,64	35 <u>.7</u> 93,51	50,006,28	4.769.77	32,023,77	128,660,98	5.881,76	9.311,88	B.755,60	8,648,85	4.594.68	3,339,68	4.323,03	1.888,80	5,525,19	52,269,46	4.222,49	2.778,40	2.220.51	4.274,00	1.498,39	14,993,79	195.924
ALTERNATIVA EM CANAL E/OU BARRAGEM REDUZIDA													·		_								
13 - Custo de Irvestimento da Obra de Canais						<u> </u>	2,970,03	5.526,00	5,526,00	5.526,00	1.848,20	2.240,42	1.915,96	807,47	2.071,36	28,431,44	1,275,65	3,463,98	1.941,25	3.401,00	468,15	10,550,03	38,981,
i 4 - Custo dos Sifōes/Aquedutos								1.437,00	2,487,00	2.431,00				_		6.355,00	724,00	Eligination.		-	-	724,00	7.079,
S - VA da Custo de Investimento			<u></u> -	L		<u> </u>	3,504,64	7.644,99	8,466,51	8,422,69	2.180,88	2.643,70	2.260,83	952,81	2.444.20	38.521,25	2.071.72	4 087,50	2,290,68	4.013,18	552,42	13.015,49	T
8 - VA dos Custos OPM							244,73	498,02	529,21	527,54	152,29	184,61	157,86	56,54	170,68	2,531,49	126,62	285,43	Witness Br		38,58	890,83	
7 - VA dos Custos Totais			İ -				3 749 37	8.143.01	8,995,72	8 950 24	2.333,17	2,828,31	2.418,71	1.019,35	2.614.68	41.052.75	2,198,34	4 372 93	2.450.63	4.293.42	590,99	13.906,32	\$4,959.

	1	2	3	4	5	1	6	7	٥	9	10	11	12	13	14		15	16	17	18	19		TOTAL
	AURORA I	ANTAS	TIP	PAU	JITIRANA	SUB-TOTAL 1	UMBURANA	FELIZARDO	CACHIMBO	CACKIMBO R	CACHIMBOSI	BOM JESUS (BOM JESUS II	BOM JESUS III	BOM JESUS IV	SUB-TOTAL 2	BOM JESUS V	BOM JESUS VII	SANTA	SANTA	РОСО	SUB-TOTAL 3	
			<u> </u>	2_SRANCC	 	(1 a 5)	 				<u> </u>	<u> </u>		<u> </u>	<u>i</u>	(8 a 14)	L	<u>i</u>	HELENA	HELENA PI		(15 a 19)	(\$Ub.1+2+3)
Retação Custo Canal / Barragem (Custo Atual)			<u> </u>	<u> 1_ ·</u>	<u> </u>	<u></u>	63,75	37,45	102,74	103,48	50,78	84,61	55,95	53,97	47.33	78,54	52.06	167,39	fi 110,31	100.45	39,44	\$2,76	28,05
Justificativa de Decisão de Manter, Reduzir ou		T	1		T		τ																
Eliminar a Barragem	Eliminada	Elim-hada 1	Eliminada	É ⊞inada	Eliminada *		Mantida	Eliminada	Eliminada	Eliminada	Elimicada	Eliminada	Eliminada	Eliminada	Mantida		Eliminada	Mantida	Mentida	Eliminada	Eliminada		
Eliminar a Barragem C - Critério de Custo: Ellminar se Alternativa auperior a 110%	Eliminada *	Elim-heda 1	Eliminada *	Eiminada*	Eliminada *		Mantida	Eliminada	Eliminada	Eliminada	Eliminada	Eliminada	Eliminada	Eliminada	Mantida	<u> </u>	Ekminada	Mantida _	Mentida	Eliminada	Eliminada		
C - Critério de Custo: Elliminar se Alternativa superior a 110% da Barragem	Eliminada *	Elim-heda *	Eliminada *	Ejirrinada*	Eliminada *	-	Mantida OP	Eliminada C	Ekminada C	€liminada C	Elimicada C	Eliminada C	Eliminada C	Eliminada C	Mantida OP	-	Ekminada C	Mantida _	Mantida C	Etiminada C	Eliminada C		<u>.</u>
C - Critério de Custo: Ellminar se Alternativa superior a 110%	Eliminada *	Elim-hada '	Elimineda *	Egminada *	Eliminada *	-	Mantida OP	Eliminada C	Ekminada C	€liminada C	Eliminada C	Eliminada C	<u>Eliminada</u> C	Eliminada	Mantida OP	-	Eliminada C	Mantida	Mantida C	Eliminada C	Eliminada C		-

CONCLUSÃO:

Barragens Eliminadas: 15 Вапаgens Reduzidas: -Barragens Mantidas: 4 Total do Anteprojeto: 19 * Barragens eliminadas em razão da seleção da nova captação à jusante de Aurora

000120

3 3 - ESTUDOS COMPLEMENTARES ANÁLISE DE ALTERNATIVAS DE SUBSTITUIÇÃO DE TÚNEIS POR ELEVAÇÃO ASSOCIADOS A CANAIS

Para verificar se as soluções dos trechos em túneis, definidos no Anteprojetos, mantinham-se como as mais viáveis técnico-economicamente, para as condições atuais de novas vazões do projeto, elaborou-se um estudo de alternativas para substitui-los por estação elevatória ou mesmo canais de grandes profundidades de escavação

Os dados básicos e características dos túneis previstos no Anteprojeto e os mantidos no projeto atual são a seguir apresentados.

DADOS BÁSICOS DOS TÚNEIS DO ANTEPROJETO E DO PROJETO

Nome	Antepro	jeto	Projeto Atual			
	Comprimento (Km)	Vazão (m³/s)	Comprimento (Km)	Vazão (m³/s)		
1 - Jatı	1,51	270	1,51	150		
2 - Antas - Tipi	0,67	216	0	0		
3 - Jitirana - Umburanas	2,07	216	0	0		
4 - Umburanas - Felizardo	0,40	216	0,40	85		
5 - Uıraúna - Major Sales	4,87	139	4,87	50		
Total (Km)	9,52		6,78	, .		

Para os três túneis mantidos, concebeu-se uma solução alternativa mista de canais escavados até o limite de 25 m de corte ao nível da berma, associada a estação elevatória com adutoras bastante curtas, de forma semelhante às estações de bombeamento do Anteprojeto.

O canal alternativo de Jati foi mantido com mesma locação do túnel, visto que seu eixo já está em ponto de sela e não existe, nas vizinhanças, caminhamento em cotas menores para o canal

Para os outros dois túneis e, principalmente, para Uiraúna - Major Sales foi possível se redefinir o traçado do canal, mesmo que aumentando-se seu, mas reduzindo-se seu custo final pela minimização de escavação em grandes profundidades em rocha

No Quadro 3 4 são apresentados todos os custos dos componentes não comuns às alternativas, não considerando-se, portanto, os canais de emboque, que têm o mesmo custo tanto para o túnel como para a elevatória. O canal de jusante foi considerado porque tem seu custo bastante reduzido na alternativa com elevatória.

Os custos de investimentos de cada componente foram obtidos a partir das respectivas curvas de custos médios constantes deste relatório

Os volumes de bombeamento para estimativa dos custos de energia e os demais elementos para cálculo dos custos atualizados foram definidos em função dos parâmetros estabelecidos, inicialmente, nos Quadros 2.5 e 2 6, com base no faseamento da obra e taxas de operação e manutenção pré-estimadas

QUADRO 3 4 Dados Basicos e Custos das Alternatívas de Substituição de Túneis por Elevatórias

		Trecho Mi	lagres - Jati	Tre	cho Umburana - Felizi	ardo	Trecho Uiraur	ıa - Major Sales
		Alternativa I	Alternativa II	Alternativa I	Alternativa II	Alternativa III	Alternativa I	Alternativa II
	Caracteristicas	Tunel + Canais	Estação Elevatória + Canais	Tunei	Canal de Encosta	Estação Elevatória + Canais	Tunel + Canais	Estação Elevatória + Canais
	Vazão	150	150	85	85	85	50	50
	Comprimento (m)	1 510,00		402,00		† 	4 874,40	
Tuneis	Altura (m)	8,11		6,55		1	5,37	
	Espessura do Revestimento (cm)	0.50		0 40		Ť	0,30	
Canais	Comprimento (m)	7 868 00	9 450 00		430 00	430 00	6 820 74	12 350 00
	Altura Manométrica (m c a)		30,00]			12,00		35 00
	Potência Instalada (KW)		52 937,10			11 999,04		20 586,65
	o Valor Atual da Série dos Volumes Bombeados no							
	12 00% (m³)		15 194 565 29			8 389 488 79		4 934 993 40
Volume Equivalente a	o Valor Atual da Série dos Volumes Bombeados no	_						
Trecho com :=	8,00% (m³)		25 715 516 66			14 373 921,01		8 455 247,65

Analise	de Custos para Taxa de Juros de 12% a a	(%) Fator de	Trecho Mil	agres - Jati	Tree	cho Umburana - Feliza	irdo	Trecho Uiraur	a - Major Sales
	(US\$ x 10 ³)	Atualização	Alternativa I Tunel + Canais	Alternativa II Estação Elevatória + Canais	Alternativa I Tunel	Alternativa II Canal de Encosta	Aitemativa (I) Estação Elevatória + Canais	Alternativa I Tunel + Canais	Alternativa II Estação Elevatória + Canais
Túnel	TO - Custo de Investimento		13 786 02		2 603 18			21 930,71	
	T1 - Valor Atual do Custo investimento	1,1872	16 366,76		3 090,50		†	26 036,14	 _
	T2 - Custo de Operação e Manutenção	0,0824	1 135,97		214,50			1 807 09	
	T3 Valor Atual Total do Tunel (T3 = T1 + T2)		17 502,73		3 305,00			27 843 23	· · · · · · · · · · · · · · · · · · ·
Canal	CO - Custo de Investimento		33 112 80	16 025 45		5 750 30	2 473 64	12 352,41	14 753 29
	C1 - Valor Atual do Custo Investimento	1,1872	39 311,52	19 025,41		6 826 76	2 936,71	14 664,78	17 515,11
	C2 - Custo de Operação e Manutenção	0 0824	2 728,49	1 320,50		473 82	203 83	1 017 84	1 215 67
	C3 - Valor Atual Total do Canal (C3 = C1 + C2)		42 040 01			7 300,58	3 140,53	15 682,62	18 730,78
Estação	E0 Custo de Investimento			51 084,30			12 360,00	<u> </u>	20 957,21
Elevatoria	E1- Valor Atual do Custo Investimento	0,8453		43 181,56			10 447,91		17 715,13
	E2 Custo de Operação e Manuterição	0,1256		6 416,19			1 552,42		2 632,23
	E3 - Custo de Energia			46 987 67			10 377,46		17 804 47
	E4 - Vajor Atual Total da EE			96 585,42			22 377,79		38 151,82
	Valor Atual Total da Alternativa (V = T3 + C3 + E4)		59 542,74	116 931,33	3 305,00	7 300,58	25 518,32	43 525,85	56 882,60
	Relação VA Custo Alternativa / VA Custo Total			1,96		2,21	7,72		1,31

Analise	de Custos para Taxa de Juros de 8% a a	(%) Fator de	Trecho Mi	lagres - Jati	Tre	cho Umburana - Feliza	ardo	Trecho Uiraur	na - Major Sales
	(US\$ x 10 °)	Atualização i = 8% a a	Alternativa I Tunel + Canais	Alternativa II Estação Elevatória + Canais	Alternativa J Tunet	Alternativa II Canal de Encosta	Alternativa III Estação Elevatória + Canais	Alternativa I Tunel + Canais	Alternativa II Estação Elevatóna + Canais
Túnel	T0 Custo de Investimento		13 786,02	L	2 603,18		i	21 930,71	
	T1 Valor Atual do Custo Investimento	1,1232	15 484,46	i T	2 923,89			24 632 57	1
	T2 - Custo de Operação e Manutenção	0,1192	1 643,29		310,30			2 614,14	
	T3 - Valor Atual Total do Tunel (T3 = T1 + T2)		17 127,75	I	3 234 19			27 246,71	
Canal	C0 - Custo de Investimento		33 112 80	16 025 45		5 750,36	2 473,64	12 352,41	
	C1 - Valor Atual do Custo Investimento	1,1232	37 192,30	17 999,79		6 458,80	2 778,39	13 874,23	16 570,90
	C2 - Custo de Operação e Manutenção	0 1192	3 947,05	1 910,23		685,44	294,86	1 472,41	
	C3 - Valor Atual Total do Canal (C3 = C1 + C2)		41 139 34	19 910,02		7 144,25	3 073,25	15 346,63	
Estação	E0 - Custo de Investimento			51 084,30			12 360,00		20 957,21
Elevatória	E1- Vator Atual do Custo Investimento	0,8729		44 591,49			10 789 04		18 293,55
	E2 - Custo de Operação e Manutenção	0,1933		9 874,60			2 389,19		4 051,03
	E3 - Custo de Energia			79 522,66			17 779,97		30 504,84
	E4 - Valor Atual Total da EE			133 988,74			30 958,20		52 849,42
	Valor Atual Total da Alternativa (V = T3 + C3 + E4)		58 267,09	153 898,76	3 234,19	7 144,25	34 031,45	42 593,35	71 178,91
	Relação VA Custo Alternativa / VA Custo Total			2,64		2,21	10,52		1,67

Arq C_Invesn wb1

Os valores atuais dos custos globais das alternativas foram calculados para as taxas de 8% e 12% a a , verificando-se que para as duas condições, a comparação dos custos, indica que a solução com túneis deverá ser mantida, conforme previsto no Anteprojeto. A relação de comparação (Custos Atuais das Elevatórias / Custos Atuais dos Túneis) variam de 1,3 até 10,5 vezes

Capítulo 4: O Traçado Ajustado às Condições Atuais do Projeto

4 1 - CARACTERÍSTICAS E DADOS BÁSICOS DO TRAÇADO ATUAL AJUSTADO

As características e os dados dos principais componentes do projeto atual com o traçado ajustado, tanto em função do estudo de alternativas de traçado global, como das alternativas localizadas de transposição dos vales, está apresentado no Quadro 4 1 Graficamente, o traçado final ajustado está apresentado, em planta e perfil, nos desenhos a seguir relacionados

- Figura 4 1 ⇒ Planta e Perfil do Terreno Natural do Traçado Ajustado Trecho 1 (escala 1 100 000),
- Figura 4 2 ⇒ Planta e Perfil do Terreno Natural do Traçado Ajustado Trecho 2, (escala 1 100 000);
- Anexo 1 3 ⇒ Planta e Perfil do Traçado Ajustado, (escala H = 1. 20 000 e V = 1·1 000)

42 - DADOS BÁSICOS DAS BARRAGENS MANTIDAS

Os dados básicos das barragens mantidas e os custos das alternativas Canais x Barragens selecionadas constam respectivamente nos quadros 4 2a e 4 2b para o trecho 1 e nos quadros 4 3a e 4 3b para o trecho 2

43 - ESTIMATIVA PRELIMINAR DOS CUSTOS COM O TRAÇADO AJUSTADO

Com o objetivo de comparação, com os custos do traçado do Anteprojeto, refez-se a estimativa preliminar dos custos, considerando-se os componentes do traçado ajustado e a mesma metodologia de avaliação paramétrica dos custos das obras, que utilizou-se para a estimativa dos custos médios da água transposta, que se utilizou nos estudos de alternativas

Nos quadros relacionados a seguir, com seus títulos auto-descritivos, apresenta-se de forma consolidada, todos os dados de custos globais e médios que poderão ser comparados com os seus respectivos valores antes do ajuste do projeto

- Quadro 4.4 Estimativa Preliminar dos Custos de Investimentos Globais para o Traçado Ajustado com Base nas Alternativas Selecionadas,
- Quadro 4 5a Dados Básicos e Estimativa Preliminar dos Parâmetros Médios de Custos de Bombeamento com Traçado Ajustado,
- Quadro 4.5b (12%)- Estimativa Preliminar dos Parâmetros e Valores Atuais dos Custos Globais e Médios do Traçado Ajustado Taxa de Juros = 12% a a,
- Quadro 4 5b (8%)- Estimativa Preliminar dos Parâmetros e Valores Atuais dos Custos Globais e Médios do Traçado Ajustado Taxa de Juros = 8% a a,

QUADRO 4.1 Dados Básicos e Características Gerais do Sistema com Traçado Ajustado

		1		1º Trecho São	Francisco Jati				2º Trecho	Salgado - Piranh:	as Apodi		·
ı Dı	iscriminação das Obras e Dados Básicos e Elementos de Custos	Captação (Braco	1º Sub-Trecho Assunctio + Silo Fran	clacol/ Terra Nova	2º Sub-Trecho Terra Nova /	3° Sub-Trecho Salgueiro /	·····	Tracho Leito Natural	1º Sub-Trecho Saloado-Jitirana/	2º Sub-Trecho Umburans /	3° Sub-Trecho Born Jeaus IV/		
		1* Estágio Braço Assunção/ Terra Nova	2º Estágio	Total	Seigueiro (PE)	Jati (CE)	TOTAL 1	Jati/SAlgado Barragem Aurora	Umburana	Bom Jesus IV	Major Sales	TOTAL 2	TOTAL GERAL (1 + 2)
1	VAZÕES DO SISTEMA			I									
1 1	Vazão máxima de dimensionamento do trecho	70,00	110		165	165		150	85	85	50		
1 2	Vszáo derivada no Trecho			15,00				65		35	-		
13	Altura Manométrica no Inicio do Trecho	29,75				81,73			55,00				
14	Altura Manométrica Acumulada no Trecho	29,75	31,64	30,88	90,25	171,98	-	171,98	226,98	226,98	226,98	-	
2	DADOS PRINCIPAIS DAS OBRAS COMPONENTES										<u> </u>		
21	Canais (km)	27,09	10,93	38,02	17,16	31,19	86,37		21,66	16,08	62,83	100.55	186,92
22	Túneis (km)	-	-	-		1,51	1,51	-	-	0,40		5,25	
23	Aqueduto/Sifôes (km)	-	-		1,08	-	1,08		-	-		-	6,76 1,08
24	Desaproprieções e Interferências (ha)	4 326,75	1 401,75	5 728,50	987,60	2 415,30	9 131,40		6 183,75	1 583.70	1 287,60	9 055.05	18 186,45
25	Linhas de Transmissão 230 KV (km)	30,00	13,00			2 x 6	105,00	-	-	-	- 1	-	105,00
26	Barragens (Unidades)	4,00	4,00	8,00	2,00	5,00	15,00			2.00	2.00	4.00	19,00
26a	Volume Acumulado (Enchimento Incial) 10º m²	105 050,00	62 200,00	167 250,00	21 500,00	77 110,00	265 860,00			18 300,00	3 190,00	21 490,00	287 350,00
2.6 b	Area Inundada (Evaporação) ha	2 623,00	1 031,00	3 654,00	303,00	947,00	4.904,00			267,00		345,00	5 249,00
26c	Volume Anual Evaporado (10º m²/ano)	45 065,01	18 432,90	63 497,91	5 161,67	15 756,29	84,415,87			3 545,13		4 600.95	89 016.82
26d	Vazão Média Contínua de Evaporação (m²/s)	1,43	0,58	2,01	0,16	0.50	2,68	-		0.11		0.15	2.82
26e	Tempo de Enchimento das Barragens do Trecho para a Vazão Inicial	17,37	6,54		4,52	16,23	44,67	-		7.06	1,23	8,29	52.96
2 7	Estações Elevatórias (Nome)	Assunção	São Franc.	Assunção/SF	Terra Nova	Salgueiro		-	Salgado/Umb				
27a	Aftura Manométrica da Elevatória (m.c.a.)	29,75				81.73	-	-	55,00				
27b	Vazão Máxima (m³/s)	70,00				165,00	-	150,00	85,00	85,00	50,00		
27c		24,50				174,17	363,21		55,00		,-0	55,00	418,21

Arg Trec3b wb1

20

QUADRO 4.2a

TRECHO 1: São Francisco - Jati

Dados e Parâmetros Básicos das Barragens de Travessia de Vales Conforme Projeto Atual

		Sub		(Braço Ass nicial = 70 (xo) / Terra No 3/s)	ova				/ Salgueiro ex = 165 (m						recho 3 Se = 55 (m3/s)					•	Total (Sub.1+2+3)
Descrição		1 BARRO VERMELHO	ANGICO 2	3 MARIA PRETA	4 MAR!	5 TERRA NOVA	5 R TERRA NOVA(RED)	SUB TOTAL 1 (1 a 5)	6 PORTELA	BARRA	8 MANGUEIR	a R MANGUEIR (RED.)	SUB- TOTAL 2 (8 s 8)	NEOREIROS	10 CERRADO	11 TANAJURA	12 SAUVA	13 SEVERINO	14 PADRE CICERO	15 ÁGUA BENTA	16 MILAGRES	16 R MILAGRES (RED.)	SUB TOTAL 3 (9 a 18)	
Áres da Bacia Hidrográfica (km 2)		<u> </u>	26,10	14,00	8,20	3 265,00		3.313,30		5,27			5,27	12,52	3,11		0,98			1,78	96,25		114,64	3 433,3
rea da Bacia Hidráulica	b Área (ha)	<u> </u>	160 00	154,00	49,00	2.260,00		2.823,00		123,00	<u></u>	180,00	303,00	118,00	109,00		35,00			24,00	660,00		947 00	3 873 0
	c - Cota (m)	<u> </u>	352,19	351,54	351,26	360,68		<u> </u>		405,53		405,33		484,36	483,14		483,04			482,45	165,00			
- Precipitação Média Anual (mm)			470,00	470,00	470,00	550,00			<u> </u>	550,00		550,00		570 00	500,00		580,00			500,00	600,00			
Evaporação Média Anual Reservatório (r	יייי)	Ĺ. <u></u>	2,257,00	2 257,00	2.257,00	2 257,00				2 257,00	[2,257,00		2,257,00	2 257,00		2 257,00			2 257,00	2 257,00			
- Altura Máxima (m) Ref Terreno Natural			14,00	14,00	15,00	18,50				23,00		20,00		24,00	37,50		33,00			19,50	31,00			
- Comprimento da Crista (m)		ļ	925,00	1 145,00	680,00	560,00				810,00		390,00	_	195,00	790,00		380,00			175,00	630,00			
- Volume Acumulado 10º m²		Ĺ	8 050,00	7 300,00	2 000,00	89 700,00	<u> </u>	105,050,00		9 500,00		12 000,00	21 500,00	6 800,00	a 200,00	<u></u>	3 500,00			1 110,00	55 500,00		77 110,00	203 860,00
Volume anual Evaporado 10º (m³/ano)			2,859,20	2 751,98	875,63	38 578,20		45.065,01		2.099,51		3 062,06	8 101,67	2 007,53	1 627,93		586,95			397,68	10 936,20		15 750,29	65 982 9
Vazão Continua Evaporada (m³/s)			0,09	0.09	0,03	1,22		1,43		0,07		0 10	0,16	0.06	0,08		0,02			0 01	0 35		0 50	2 01
Nº de Femilies Reassentadas			10,67	10,27	3,27	150,67		174,87		8,20		12,00	20,20	7 93	1,27		2 33			1,60	44 00		83 13	258 21
Tempo de Enchimento para a Vazão do T	recho		1 90	1 21	0 33	14,83	l	17,37	l	200		2 53	4,52	1 85	1,73		0,74		Ì	0 23	11 68		18 23	38 12

,12I

QUADRO 4.2b

TRECHO 1: São Francisco - Jati

Custo das Alternativas Selecionadas (Barragens e Canais de Encosta)

	Sub		(Braço Ass nicial = 70 (/ Salgueiro ax = 165 (m	3/s) ´					recho 3: Sa = 55 (m3/s)						Total (Sub.1+2+3)
Descrição	1 BARRO VERMELHO	ANGICO	3 MARIA PRETA	4 MARÍ	5 TERRA NOVA	5 R TERRA NOVA(RED.)	SUB TOTAL 1 (1 a 5)	6 PORTELA	7 BARRA	8 MANGUEIR	8 R MANGUEIR (RED.)	SUB- TOTAL 2 (6 a 8)	9 NEGREIROS	10 CERRADO	11 TANAJURA	12 SAĹIVA	13 SEVERINO	14 PADRE CICERO	15 ÁGUA BENTA	16 MILAGRES	16 R MILAGRES (RED.)	SUB- TOTAL 3 (9 a 16)	
1 - Custo da Obra da Barragem		1.747,02	2,583,46	1,234,88	5.522,28	Barring Marin	11.087,64		2.316,85		1.000,00	3.316,85	1.050,92	3.075,72		1,459,08			350,61	4.413,00		_10,349,33	24.753,81
2 - Custo da Desapropriação Nov/83 (US\$ × 10²)		34,62	45,23	15,76	1,316,00		1.411,62	Brein Bir	46,79		47,00	93,79	28,74	32,58		22,43		30	8,71	171,99		264,46	1.769,86
3 - Custo do Reassentamento		160,00	154,00	49,00	2.260,00		2.623,00		123,00		180,00	303,00	119,00	109,00	117681-001:	35,00			24,00	660,00		947,00	3.873,00
4 - Custo de Remanejamento e interferências				<u> </u>						Service in		<u>-</u>			3350111-4-1		7 10	rijas črimerim	-				
5 - Custo Total de Investimento da Barragem		1.941,64	2.782,69	1,299,64	9,098,28	ZLANIA TOTAL	15,122,25		2.485,64		1.227,00	3,713,64	1.198,68	3,217,31		1,516,51		Pir Name	383,32	5.244,98		11,560,78	30.396,67
5 - Custo dos Cartais entrada e Saída		1,776,80	2.881,83	1.505,08	3,346,98		9.310,67	6 (0) (0)	906,6		3.411.73	4.318,34	1.012,43	732,72		473,00		i di di d	280,04	263,34		2,761,53	16.390,54
7 - VA des Custes Totais de Investimente	inibili in	4.414,53	6,487,48	3.329,74	14.775,01		29.006,77	acae de	4.028,46	3	5,507,10	9.535,56	2,825,01	4.659,47	incelle iun	2.361,95			787,54	6.539,48		17.003,45	5 55.545,78
5 - VA dos Custos de OPM des Barregens + Canal	Secretary of the second	290,36	433,86	225,77	730,83	CONTROL OF THE STREET	1.680,82	a santana	265,81	and and	363,53	629,14	170,02	313,82	an en an	159,20			51,97	385,33		1.050,33	3.390,29
9 - Custo da Água do Enchimento Incial (US\$ x 10")		79,68	96,14	26,34	1,181,35	**************************************	1.363,51		274,27		348,44	620,71	464,46	432,80		184,73			58,59	2.929,29		4.089,87	6,074,08
10 - Custo Anual Água Evaporada	Jan Ballana	37,66	38,24	11,53	508,07		593,51		60,62	2	88,40	149,02	105,96	98,48	0	30,98			20,99	577,21	13 E8 52 2 E1 85	831,62	1.574,14
11 - VA dos Custos Totais de Enchimento e Evaporação		389,96	394,79	121,38	5,387,89		6.274,00	g stanie	773,74	(Palifornia)	1.074,87	1.848,61	1.337,55	1.227,78	Huan ee	440,00			231,54	7.685.52		10.922,39	19.045,00
12 - VA dos Custos Totals da Alternativa Barragem		5.094,85	7,316,13	3.676,88	20.873,73		36.961,59	i i i i i i i i i i i i i i i i i i i	5.067,81		6,945,50	12.013,31	4.132,58	6.231,06		2.961,15	EGH H	anateniinii k	1.071,05	14.610.33		29.006,18	77,981,07
ALTERNATIVA EM CANAL E/OU BARRAGEM REL	OUZIDA			I/																			
13 - VA da Variante da Barragem Reduzida	<u> </u>						<u> </u>				-										4		-
14 - Custo de Investimento da Obra de Canais	5,083,61		19.11		dia de de		5.083,61	4.031,45	60.00	e Recipi		4,031,45	S. allach		1.101,54		3.053,40	3.357.00			Wallahili	7.511,94	16.627,00
15 - Custo dos Sifões/Aquedutos	5.317,40						5,317,40	-		a sinciple					1,303,00		3.907,00				MINE	5.210,00	10,527,40
16 - VA do Custo de investimento	10.158,99						10.158,99	4.757,11			ì	4,757,11	an an an	iji sava	2.319,28	Waring.	6,659,85	3.961,26			M.M.B.OR	12.940,39	27.856,50
17 - VA dos Custos OPM	576,82						676,82	332,19				332,19			129,47		367,64	276,62				773,72	1.682,73
18 - VA dos Custos Totais	10.735,81						10.735,81	6.089,30				5,089,30		Quillian.	2.448,75		7.027,49	4.237,88				13.714,11	29.539,23
	-				-																	_	
	BARRO VERMELHO	ANGICO	3 MARIA PRETA	MARÍ	5 TERRA NOVA	5 R TERRA NOVA(RED.)	SUB TOTAL 1 (1 a 5)	6 PORTELA	7 BARRA	MANGUEIR	8 R MANGUEIR (RED.)	SUB- TOTAL 2 (6 a 8)	9 NEGREIROS	10 CERRADO	11 TANAJURA	12 SAÚVA	13 SEVERINO	14 PADRE CICERO	15 ÁGUA BENTA	16 MILAGRES	16 R MILAGRES (RED.)	SUB- TOTAL 3 (9 a 18)	TOTAL
Relação Custo Canal / Barragem (Custo Atual)	<u> </u>											<u>-</u>											
Justificativa de Decisão de Menter, Reduzir ou Eliminar a Barragam	Eliminada	Mantida	Mantida	Mantida	Mentida	Alternativa Descartada		Eliminada	Mantida	Reduzide	Mantida Reduzida		Mantida	Mantida	Eliminada	Mantida	Eliminada	Eliminada	Mantida	Mantida	Alternativa Descartada	-	Ŀ
C - Critério de Cústo: Eliminar sa Alternativa superior a 110% da Barragem OP - Necessidade p'Operação de Elevatória ou Compensação de Vazões	С	c	С	С	C OP	٠		С	С	-	C OP	•	U	С	С	C	O	c	С	C OP			-

CONCLUSÃO:

Barragens Eliminadas: 5
Barragens Reduzidas: 1
Barragens Mantidas: 10
Total do Anleprojeto: 16

000128

Anjacopy Technol

QUADRO 4.3a

TRECHO 2: Aurora - Major Sales (Transposição Salgado - Piranhas / Apodi) Dados e Parâmetros Básicos das Barragens de Travessia de Vales Conforme Projeto Atual

					a - Jitirana 3, Qmax =		a				Qir		o-Trecho 2 m³/s; Qmax						Qinicial	Sub-Tre = 15 m³/s		50 m³/s		
		AURORAI	2 Antas	3 TIPÍ	4 PAU	5 JITIRANA		8 LIMBURANA	7 FELIZARDO	8 CACHIMBO	GACHIMSO (10 CACHIMBO R	11 BOM JESUS I	12 BOM JESUS	13 II BOM JESUS I	14 BOM JESUS IV	SUB-TOTAL 2	15 BOM JESUS V	16 BOM JESUS VII	17 SANTA	18 SANTA	19 Poço	SUB-TOTAL 1	TOTAL
Descrição .	 	 	 -	 -	BRANCO	 	(1 = 5)	ļ	 -	 -	 -	ļ.— <u>—</u>	 	 _	 	ļ	(5 = 14)	ļ <u> </u>		HELENA	HELENA #	<u> </u>	(15 a 10)	(Sub.1+2+3
a - Áres da Baois Hidrográfics (km 2)	<u> </u>					<u> </u>	ļ	16,71				<u> </u>	ļ	L		3,42	20,13		2,13	5,00		ĺ	7,13	3 27,26
Área da Bacia Hidráulica	b - Area (ha)	<u> </u>		Ļ	<u></u> .	ļ	<u> </u>	150,00		<u> </u>			<u> </u>		<u> </u>	117,00	267,00		21,00	57,00			78,00	
	c - Cota (m)	<u> </u>			<u> </u>			300,90					Ĺ	Ĺ		299,00			298,62	298,29			1 .	T .
d - Precipitação Média Anual (mm)		ļ	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>	870,00		<u></u>	L					850,00			850,00	830,00			Ţ.	Τ.
e - Evaporeção Mêdia Anual Reservatório (mm)								2.189,00			[[2.189,00			2.189,00	2.189,00				
i – Altura Máxima (m) Ref. Terfeno Natural		ļ		ļ	<u> </u>		ļ <u> </u>	22,00		<u></u>	L	<u> </u>	<u> </u>	L		18,00			11,00	11,00			_	T .
g - Comprimento da Crista (m)								490,00			<u></u>					720,00		Ĭ	280,00	215,00			_	T .
h - Volume Acumulado 10º m²		<u> </u>			<u> </u>	<u>L</u>		11.300,00					L			7.000,00	18.300,00		740,00	2.450,00			3.190,00	21.490,00
- Volume anual Eveporado 10º (mº/ano)		<u> </u>						1.978,50					Ĺ			1.586,63	3.545,13		281,19	774,63			1.055,82	4.600,95
j - Vazão Continus Evaporada (m²/s)		ļ		ļ	ļ	<u> </u>		0,06								0,05	0,11		0,01	0,02			0,03	
k - Nº da Familias Reassentadas				<u> </u>	<u> </u>	<u> </u>		10,00								7,80	17,60		1,40	3,50		-	5,20	1
I - Tempo de Enchimento pera a Vazão do Trecho		L		<u> </u>	<u> </u>		L	4,36	L				ļ			2.70	7,06		0.57	1.89		_	2,46	

QUADRO 4.3b

TRECHO 2: Aurora - Major Sales (Transposição Salgado - Piranhas / Apodi) Custo das Alternativas Selecionadas (Barragens e Canais de Encosta)

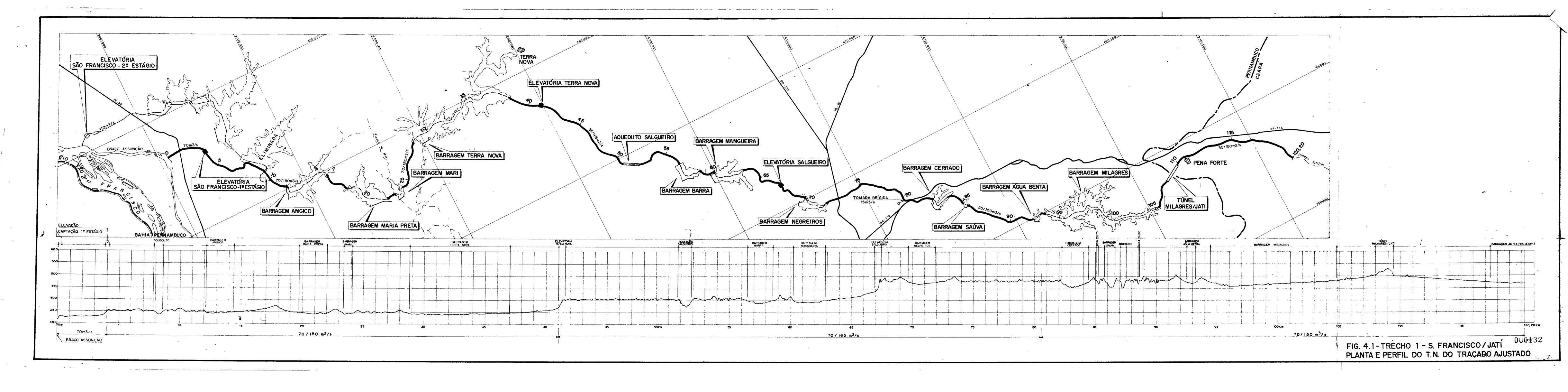
				- Jitirana/l , Qmax = 8						Qin	Sub nicial = 30 n	-Trecho 2: n³/s; Qmax	= 85 m²/s					Qinicial	Sub-Tre = 15 m³/s;	cho 3: Qmax = 5	0 ന²/s		
	1 AURORA I	2 ANTAS	3 TIPÍ	4 PAU	5 JITIRANA	SUB-TOTAL 1	B UMBURANA	7 FELIZARDO	S CACHIMBO (GACHIMBO II	10 CACKIMBO III	11 BOM JESUS I	12 BOM JESUS K	13 BOM JESUS RI	14 BOM JESUS TV	SUB-TOTAL 2	15 BOM JESUS V	16 BOM JEBUS VII	17 SANTA	18 SANTA	18 POÇO	SUE-TOTAL 3	TOTAL
Descrição				BRANCO		(1 = 6)										(6 a 14)		<u></u> _	HELENA	HELENA III		(15 a 19)	(Sub.1 + 2 + 3)
1 - Custo de Obre de Barragem		8.49		age of the	100		2.228,87								2,736,71	4.965,57	G III Birdi	535,44	514,27	32.68.5		1.049,70	6.015,28
2 - Custo da Desapropriação Nov/83 (US\$ x_10°)	100	SELVE OF			in illiani		43,85								41,69	85,55		9,99	21,92	- Citage o		31,91	117,48
3 - Custo do Reassentamento	Shirt Care			10.0960813			150,00	3816154		100			The state of		117,00	267,00		21,00	57,00	200 High 200	Company of the second	78,00	345,00
4 - Custo de Remanejamento e Interferências				4.						<u> </u>					-			<u> </u>					ļ
5 - Custo Total de Investimento da Barregem	e private	ne enclo	100				2,422,72	175 164	Bill of Ro	Selection (and state	403.50	e sejictio		2,895,40	5.318,12	e di pale il	568,43	593,18	- Benine	1455	1,159,62	5,477,74
G - Custo dos Canais entrada e Salda	10000	Street,	Market 18				363,09		400	100	Section 18		Marie III		125,59	488,88	a Karalia	1.380,42	399,38	10000	12.5	1.759,60	2.248,48
7 - VA dos Custos Totals de Investimento				7.0			3,307,31		, j	10.0					3,586,52	6.893,84	a de la composición dela composición de la composición de la composición dela composición dela composición dela composición de la composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela comp	2.287,56	1,178,37		177.9	3,465,93	10.359,76
8 - VA dos Custos de OPM das Barragens + Canal							213,58								235,85	449,43		156,22	75,28			231,50	680,93
9 - Custo da Água do Enchimento Incial (US\$ x 10°)		direction of		2 5 4	g it je ses		966,49		a to the		SERBILLER.			Life in	598,71	1.585,20	1 - 64 (64)	81,00	268,18	13.54		349,18	1,914,38
10 - Custo Anuai Água Evaporada	anii d	400.0	100	juant.			169,22	1.0		A 14 - 44	ş geli		harba bali	dans.	133,99	303,21		30,78	84,79	et es la rec		115,57	418,79
11 - VA dos Custos Totais de Enchimento e Evaporação	all a grand	ON THE REAL PROPERTY.					2,360,87							Personal C	1.702,82	4.063,69		334,62	966,85			1.301.47	5,365,17
12 - VA dos Custos Totais da Alternativa Barragern		5.1					5,881,78								5.525,19	11,406,96		2.778,40	2,220,51			4,998,91	16.405,86
ALTERNATIVA EM CANAL E/OU BARRAGEM REDUZIDA													,			,			1				
13 - Custo de Investimento da Obra de Canais	<u> </u>	<u> </u>				· .	949	5.526,00	5.526,00	5.526,00	1,848,20	2.240,42	1.915,96	807,47	19:50	23.390,05	1.275,65	5		3.401,00	468,15	5,144,80	28,534,65
14 - Custo dos Sifőes/Aquedutos		-						1.437,00	2.487,00	2.431,00		<u>-</u>		<u> </u>	1000	6,355,00	724,00	0				724,00	7.079,00
15 - VA do Custo de investimento		<u> </u>						7.844,95	8.486,51	8.422,69	2.180,88	2.643,70	2.260,83	952,81		32,572,41	2.071,7	2		4.013,18	552,42	6.637,32	39.209,73
16 - VA dos Custos OPM				-	<u>.</u>			498,02	529,21	527,54	152,29	184,61	157,88	66,54	161.52	2,116,08	126,62	2 10 10 10		280,24	38,58	445,43	2.561,52
17 - VA dos Custos Totais	<u>.</u>		<u> </u>	•	<u> </u>	<u> </u>	250	8.143,01	8.995,72	8.950,24	2.333,17	2.828,31	2,418,71	1.019,35	E S	34.685,49	2.198,34	4		4.293,42	590,99	7.082,76	41.771,25

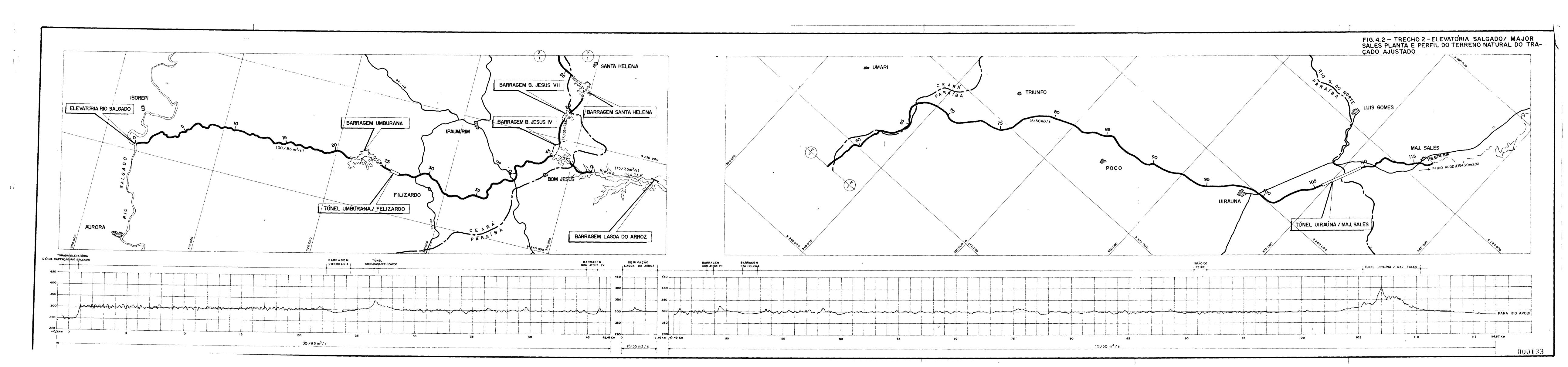
			,	,	5		_	7		9	10	11	12	13	14		15	16	17	14	19		TOTAL
	AURORAT	ANTAS	TIP	PAU	JITIRANA	SUB-TOTAL 1	UMBURANA	FELIZARDO	CACHIMBO I	CACHIMBO (I	CACHIMBO III	BOM JESUS I	BOM JESUS N	BOW TERNS III	BOM JESUS IV	SUB-TOTAL 2	BOM JESUS V	BOM JESUS VII		SANTA	POÇO	SUB-TOTAL 3	ł
				BRANCO		(1 = 5)						<u> </u>				(8 a 14)	L	ļ	HELENA	HELENA III		(15 a 19)	(Sub.1 + 2 + 3)
Relação Custo Canal / Berragem (Custo Atual)												<u> </u>	<u> </u>		<u> </u>	•	<u> </u>	<u> </u>		<u> </u>		·	·
													· · · · · · · · · · · · · · · · · · ·										1
Justificativa da Decisão de Manter, Reduzir ou	Eliminada *	Cu-bada e	Eliminada 7	Climbrada *	Eliminaria +	_	Mantida	Climinada	Eliminada	Fliminada	Eliminada	Fliminada	Eliminada	Filminada	Mantida	١	Eliminada	Mantida	Mantida	Eliminada	Eliminada	_	1.
Eliminar a Barragem	Estimosos	CHIMINION	CALIMIANA	CIRTERION	CHIMIAGA		MINISTE	LIMITAGE	- Estimado	Little	Lattia Augus	- Landard		Legitoripode	1								
C - Critério de Custo: Eliminar se Alternativa superior a 110%	_			_			~~	-	اما	ء ا	l - c	۱ ه	1 6	С	OP.	_	l e	l c	С	lel	c	_	_
da Barragem		٠	1 -			1 1	· 0+	, -	, ,		} ` ` `	} ~	1 1		} •	1 -	ļ	} -]	, - ,	. ~ .	_	J
OP - Necessidade p/Operação de Elevatória ou	1		1		1	1		ĺ	1		l		1 1		1		i		i l	l i		i	l
Compensação de Vazões			1		l				1	1	l						_		1				

CONCLUSÃO:

Barragens Eliminadas: 15
Barragens Reduzidas: Barragens Mantidas: 4
Total do Anteprojeto: 19

* Barragens eliminadas em rezão da seleção da nova captação à jusante de Aurora.




QUADRO 4.4 Estimativa Preliminar do Custo de Investimentos Globais do Sistema com Traçado Ajustado com base nas Alternativas Selecionadas (US\$ x 10³)

				1ª Trecho São	Francisco - Jati				2ª Trecho	Salgado - Pirant	nas - Apodi	···	
Ordem	Discriminação das Obras e Custos	Captação (Brapo 1º Estágio Braço Assunção/ Terra Nova	1º Sub-Trecho Assunção • São Franc 2º Estágio São Francisco/ Vermelho	tsco)/ Terra Nova	2º Sub-Trecho Terra Nova / Salgueiro (PE)	3º Sub-Trecho Salgueiro / Jati (CE)	TOTAL 1	Trecho Leito Natural Jati/SAlgado	1º Sub-Trecho Salgado-Jitirena/ Umburana	2º Sub-Trecho Umburana / Bom Jesus IV	3° Sub-Trecho Born Jesus IV/ Major Sales	TOTAL 2	TOTAL GERAL (1 + 2)
	DADOS BÁSICOS DO SISTEMA		<u> </u>										
	Vazão máxima de dimensionamento do trecho	70 00	110		165	165		150	85	85	50		
	Vazão derivada no Trecho			15,00				65	5	35			
	Altura Manométrica no Início do Trecho	29,75	31,64	30,88	59 37	81,73	-		55 00			-	-
	Altura Manométrica Acumulada no Trecho	29,75	31,64	30,88	90,25	171,98	•	171,98	226,98	226,98	226,98		•
1	CUSTO DE INVESTIMENTO												
1.1	Canais	66 287 40	23 607,41	89 894,81	54 149 15	117 380,98	261.424,94		40 629 00	42 808 12	133 639 03	217 076,15	478 501,09
12	Tuneis					13 786,08	13 786,08			2 590,00	21 820,00	24.410,00	38 196,08
13	Sifões e Aquedutos	5 317,40		5 317,40	12 531,00	5 210,00	23 058,40			6 355 00	2 224 00	8 579,00	31 637,40
14	Linhas de Transmissão	2 045,62	888 91	2 934 53	1 247,54	342,36	4 524,43		1 000,00		[1 000,00	5 524,43
15	Dranagem e Obras Complementares	5 020 69	1 226,79	6 247,48	3 426,32	6 479,51	16 153,31		4 062 90	6 457 80	1 348 70	11 869,40	28 022,71
16	Barragens	15 122,25	21 178,29	36 300,54	3 713,64	11 560,78	51 574,96		3 500 00	5 318,00	6 477,74	15 295,74	55 870,70
17	Elevatórias	24 750,00	38 115,00	62 865,00	100 832,00	118 435 60	282 132,60		49 088,00			49 088,00	331 220,60
	CUSTO TOTAL	118 543,36	85 016,40	203 559,76	175 899,65	273 195,31	652 654,72		98 279,90	63 528,92	165 509,47	327 318,29	979 973,01

Arq TREC21 WB1/8

44 - RESULTADOS E CONCLUSÕES

Todos os componentes e custos que foram alterados com o ajuste do traçado estão, de forma resumida, apresentados no quadro 4 5, fazendo-se, ainda, a comparação em relação ao custo com o traçado do anteprojeto

Da análise dos resultados do Quadro 4.5, observa-se em relação às questões técnicooperacionais do sistema o seguinte.

- a a quantidade total de barragens foi reduzida, de 40 para 19 unidades e consequentemente a área inundada, de 12 858 ha para 5 249 ha, ou seja para apenas 41%, que corresponde a 7 609 ha,
- b as perdas totais evitadas por evaporação são equivalentes a 3,32 m³/s, ou 4,74% da vazão inicial do projeto;
- c as perdas relativas ao enchimento do volume morto dos reservatórios por sua vez equivalem 2,33 m³/s (3,3% da vazão inicial), quando transformados em equivalente a vazão contínua anual considerando-se a taxa de juros de 12%,
- d o número possível de famílias reassentadas será reduzido para aproximadamente 40% do previsto (de 857 para 350, quando considerado uma área média de 15 ha por família);
- e o tempo de enchimento total dos reservatórios com a capacidade plena de (70 m³/s / 30 m³/s) da 1ª Etapa, seria reduzido de 213 dias (de 260 para 47 dias) ou de 284 (de 347 para 63) com a média de 75% da capacidade de bombeamento,
- f a quantidade de elevatórias seria aumentada de 4 para 5 unidades e a potência instalada de 396 MW para 418 MW, que corresponde a 6%,
- g. o comprimento total dos canais aumentará de 13,75 km, o que equivale a 8% do comprimento do Anteprojeto

Conclusões relativas a custos de investimento, operação, manutenção e energia:

Os custos globais e médios acima referidos estão claramente apresentados nos itens 4 e 5 do Quadro 4 5, com estimativas, respectivamente, para as taxas de juro de 12% e 8%

Mesmo com a eliminação de 21 barragens, que em alguns casos, implicou no aumento de investimento inicial dos custos das alternativas, a otimização de alguns trechos e a solução da captação à jusante de Aurora para o Trecho 2, permitiu ainda, uma redução no custo total de investimento em 3,0%, ou seja de US\$ 980,53 x 10⁶ para US\$ 951,95 x 10⁶.

Considerando-se porém, os valores atuais dos custos totais, pode-se concluir.

a em relação ao valor atual dos custos totais (4 6 e 5 6) o ajuste do traçado permitiu uma redução estimada em 4,5% e 17%, respectivamente para 8% e 12% de juros anuais

- b os custos de oportunidade, relativos às perdas nas barragens pelo não faturamento de água bombeada, foram reduzidos para 16,20% (a taxa de 12% a a.) ou 21,72% (a taxa de 8% a.a),
- c a estimativa do custo médio global da água transportada, de acordo com a taxa de juros poderá variar em US\$/10³m, de 76,09 (para 12% a a.) a 45,92 (a 8% a a.), com respectivamente, redução de 4,5% e 16,7%, em relação ao traçado do Anteprojeto,
- d. para o Valor Atual total, incluindo o custo de oportunidade das perdas com enchimento e evaporação, a redução em valores atualizados pode atingir até 20%, (veja item 58) considerando-se a taxa de juros de 8% a a

QUADRO 4.5a

Dados Básicos e Estimativa Preliminar dos Parâmetros Médios de Custos de Bombeamento do Projeto Atual com Traçado Ajustado (US\$/10°)

(Com Base no Ajuste Preliminar dos Custos do Sistema do Anteprojeto e Custos já Disponiveis do Projeto Atual)

Discriminação das Obras e Dados Básicos e Elementos de Custos Captação (Braço Assunção) Testago Para Nova Para Nova Para	TOTAL GERAL (1+2)
VAZČES DÖ SISTEMA	GERAL (1+2) 186,92 6,76 1,00 18 186,44 105,00
VAZOES DO SISTEMA Total VAZOES DO SISTEMA Total Various of Technologo Total Vazoes possible Total Total Vazoes possible Total Total Vazoes possible Total Tota	GERAL (1+2) 186,92 6,76 1,00 18 186,44 105,00
VAZÕES DO SISTEMA	GERAL (1+2) 186,92 6,76 1,00 18 186,44 105,00
VAZÕES DO SISTEMA	186,92 6,76 1,00 18 186,44 105,00
1	6,76 1,08 18 186,48 105,00
1	6,76 1,08 18 186,48 105,00
Vazio derivada no Trecho 29,75 31,64 30,88 59,37 81,73 171,98 55,00	6,76 1,08 18 186,48 105,00
Altura Manométrica no Tracho 29,75 31,64 30,88 59,37 81,73 171,98 55,00 14 Altura Manométrica Acumulada no Tracho 29,75 31,64 30,88 90,25 171,98 171,98 171,98 226,98 226,98 226,98 226,98 25 ADDOS PRINCIPAIS DAS OBRAS COMPONENTES 21 Canairs (km) 21,068 27,09 10,93 38,02 17,16 31,19 86,37 21,66 16,06 62,83 100,55 22 Turiess (km)	6,76 1,08 18 186,48 105,00
1	6,76 1,08 18 186,48 105,00
2 DADOS PRINCIPAIS DAS OBRAS COMPONENTES 27,09 10,93 38,02 17,16 31,19 86,37 21,66 16,06 62,83 100,55 2 Turnes (km)	6,76 1,08 18 186,48 105,00
Canara (km) Canara (km)	6,76 1,08 18 186,48 105,00
22 Tunes (km) 23 Aqueduto/Sif6es (km) 24 Deserroprações e Intaferências 25 Linhas de Transmissão 230 KV (km) 30,00 13,00 43,00 2 x 25 2 x 6 105,00	6,76 1,08 18 186,48 105,00
23 Aqueduto/Sifces (km) 24 Desaproprações e Interferências 4 326,75 1 401,75 5 728,50 987,60 2 415,30 9131,40 - 6183 75 1 583 70 1 287 60 9055,05 25 Linhas de Transmissão 230 KV (km) 30,00 13,00 43,00 2 x 25 2 x 6 105,00 26 Barragens (Unidades) 4,00 4,00 8,00 2,00 5,00 15,00 - 2,00 2,00 2,00 4,00 26 a Volume Acumulado (Enchimento Incal) 10° m³ 105 050,00 62 200,00 167 250 00 21 500 00 77 110,00 265 860,00 - 18 300,00 3 190,00 21 490,00 26 b Aras Inundada (Evaporação) ha 26 c Volume Arual Evaporado (10° m³/ano) 45 065 01 18 432,90 63 497,91 5 161,67 15 756,29 84 415,87 - 3 3545,13 1 055,82 4 600,95 26 d Vazão Média Continua de Evaporação (m³/s) 1,43 0,58 2,01 0,16 0,50 2,68 0,11 0,03 0,15 26 a Tempo de Enchimento das Barragens do Trecho para a Vazão Inicial 17,37 6,54 23,91 4,52 - Salqado/Umb	1,08 18 186,48 105,00
24 Deseproprações e Interferências 4 326,75 1 401,75 5 728,50 987,60 2 415,30 9 131,40 - 6 183 75 1 583 70 1 287 60 9 055,05 2 5 Linhas de Transmissão 230 KV (km) 30,00 13,00 43,00 2 x 25 2 x 6 105,00	18 186,45 105,00
25 Linhas de Transmissão 230 KV (km) 30,00 13,00 43,00 2 x 25 2 x 6 105,00	105,00
26 Barragens (Unidades) 4,00 4,00 8,00 2,00 5,00 15,00 - 2,00 2,00 4,00 26 a Volume Acumutado (Enchimento Incual) 10° m³ 105 050,00 62 200,00 167 250 00 21 500 00 77 110,00 265 860,00 - 18 300,00 31 90,00 21 490,00 26 b Area Inundada (Evaporação) ha 262 30 0 1031,00 3 654,00 303,00 947 00 4 904,00 - 267 00 78 00 345,00 26 c Volume Anual Evaporação (10° m²/ano) 45 065 01 18 432,90 63 497,91 5 161,67 15 756,29 84 415,87 - 3545,13 1055,82 4 600,95 26 d Vazão Média Continua de Evaporação (m²/s) 1,43 0,58 2,01 0,16 0,50 2,68 0,11 0,03 0,15 26 e Tempo de Enchimento das Barragens do Trecho para a Vazão Inicial 17,37 6,54 23,91 4,52 16,23 44,67 - Salqado/Umb - Salqado/Umb - Salqado/Umb	19.00
26 a Volume Acumulado (Enchimento Incial) 10° m³ 105 050,00 62 200,00 167 250 00 21 500 00 77 110,00 265 860,00 - 18 300,00 3 190,00 21 490,00 26 b Area Inundada (Evaporação) ha 2 623,00 1 031,00 3 654,00 303,00 947 00 4 904,00 - 267 00 78 00 345,00 26 c Volume Anual Evaporação (10° m³/ano) 45 065 01 18 432,90 63 497,91 5 161,67 15 756,29 84 415,87 - 3545,13 1 055,82 4 600,95 26 e Volume Anual Evaporação (m³/s) 1,43 0,58 2,01 0,16 0,50 2,68 0,11 0,10 0,30 0,15 26 e Tempo de Enchimento das Barragens do Trecho para a Vazão Inicial 17,37 6,54 23,91 4,52 16,23 44,67 - 706 1 23 8,29 27 Estações Elevatórias (Nome) Assunção São Franc Assunção/SF Terra Nova Salqueiro - Salqado/Umb	19.06
2 6 b Area Inundada (Evaporação) ha 2 623,00 1 031,00 3 654,00 303,00 947 00 4 904,00 - 267 00 78 00 345,00 2 6 c Volume Anuel Evaporação (10º m²/ano) 45 065 01 18 432,90 63 497,91 5 161,67 15 756,29 84 415,87 - 3 545,13 1 055,82 4 600,95 2 6 d Vazão Média Continua de Evaporação (m²/s) 1,43 0,58 2,01 0,16 0,50 2,88 0,11 0,03 0,15 2 6 e Tempo de Enchimento das Barragens do Trecho para a Vazão Inicial 17,37 6,54 23,91 4,52 16,23 44,67 - 706 1 23 8,29 2 7 Estações Elevatórias (Nome) Assunção São Franc Assunção/SF Terra Nova Salqueiro - Salqueiro	287 350.00
2 6 c Volume Anuel Evaporado (10º m³/ano) 45 065 01 18 432,90 63 497,91 5 161,67 15 756,29 84 415,87 . 3545,13 1 055,82 4 600,95 2 6 d Vazão Média Contínue de Evaporação (m³/s) 1,43 0,58 2,01 0,16 0,50 2,68 0,11 0,03 0,15 2 6 e Tempo de Enchimento das Barragens do Trecho para a Vazão Inicial 17,37 6,54 23,91 4,52 16,23 44,67 . 706 123 8,29 2 7 Estações Elevatórias (Nome) Assunção São Franc Assunção/SF Terra Nova Salqueiro - Salqado/Umb	5 249.00
2 6 d Vazão Média Continua de Evaporação (m³/s) 1,43 0,58 2,01 0,16 0,50 2,68 0,11 0,03 0,15 2 6 e Tempo de Enchmento das Barragens do Trecho para a Vazão Inicial 17,37 6,54 23,91 4,52 16,23 44,67 - 7.06 1.23 8,29 2 7 Estações Elevatórias (Nome) Assunção São Franc Assunção/SF Terra Nova Salqueiro - Salqueiro Salqueiro	89 016.82
2 6 e Tempo de Enchmento das Barragens do Trecho para a Vazão Inicial 17,37 6,54 23,91 4,52 16,23 44,67 - 7.06 1.23 8,29 2.7 Estações Elevatórias (Nome) Assunção São Franc Assunção/SF Terra Nova Salqueiro - Sal	2,82
2.7 Estações Elevatórias (Nome) Assunção São Franc Assunção/SF Terra Nova Salqueiro - Salque/Umb -	52.96
2.7 a Attura Manométrica de Flevatória (m.c.a.) 29.75 31.64 30.88 59.37 81.73 171.98 5500	52,50
	171.98
2 7 5 Vazão Máxima (m*/s) 70,00 110,00 185,00 155,00 150 0 85,00 50,00 -	11110
2 7 c Potència Instalada (MW) 24,50 38,50 63 00 126,04 174,17 363,21 - 55,00 55,00	418,21
3 ELEMENTOS BASICOS P/ESTIMATIVA DOS CUSTOS DE BOMB	-1.0,2
3 1 Altura Manométrica Acumulada até o Trecho 29.75 31.64 30.88 90.25 171.98 - 171.98 227.48 204.98 -	
3.2 Custo Unitário de Energia de Bombeamento até o Trecho (US\$/10* m²) 3,07 3,26 3,18 6,12 8,42 567 567 5,67	5.67
3.3 Votume Anual Max. Faturável (Qmédio = 0.75 Qmax.) x 10° m³ 4 257 360.00 2 010 420.00	• • • • • • • • • • • • • • • • • • • •
3.4 Notional Equipolating a Sarie de Velores Estudios Atualizado (10%)	
34 a Para a Taxa de 8% 12 333 923,10 19 381 880,15 31 715 803,88 28 267 068,33 88 289 940,54 25 715 516,66 14 373 921 01 14 373 921 01 8 455 247,65 62 918 606,33 1	151 208 546.87
3 4 b Para a Taxa de 12% 7 287 763,72 11 452 200,13 18 739 963,85 16 714 021,81 52 168 007,47 15 194 565 29 8 389 488,79 8 389 488,79 4 934 993 40 36 908 536,27	89 076 543 74
4 CUSTO DA ENERGIA DE BOMBEAMENTO	
4 1 Custo do Enchimento (nicial) 322,15 202,86 532,38 200,01 1 366,98 2 099,37 428,17 74,64 502,80	2 602,18
4 2 Custo Anual da Energia Relativa a Perdas por Evaporação 138,20 60 12 202 12 48 02 279 32 529,46 82,95 24,70 107,65	637,11
4.3 Valor Atual da Energia Reliativa a Perdas por Evaporação	
4 3 a Pars a Taxa de 8% 1647,32 716,61 2 363,92 572,38 3 329 53 6 265,64 968,71 294,46 1 283,17	7 549,01
4 3 b Para a Taxa de 12% 138,75 495,37 1 634 12 395 68 2 301 62 4 331,42 683,47 203 55 887,03	5 218,44
4.4 Valor Atual da Energia de Bombeamento dos Volumes Faturávies	
4 4 a Para a Taxa de 8% 37 823,58 63 213 06 101 036 63 173 112,89 238 310,87 512 480,39 81 491,51 81 491,51	593 951,90
4 4 b Para a Taxa de 12% 22 348 87 37 350 79 59 699 67 102 287 47 140 811 09 302 798,23 47 563,37 47 563,37	350 361,60
4.5 Velor Atual Total da Energia (Perdas Evaporação+ Volume Enchimento)	
4 5 a Para a Taxa de 8% 1 969,47 919 47 2 896,30 772,40 4 696,51 8 365,21 1 416,88 369,10 1 785,98	10 151,19
4 5 b Para a Taxa de 12% 1 460 90 698 23 2 159,13 595,69 3 668,60 6 423,42 1 111,64 278,19 1 389,83	7 813,26
4 6 Valor Atual Total da Energia (Perdas + Volumes Faturáveis)	
4 6 a Para a Taxa de 8% 81 491,51 1 416,88 369,10 83 277,49	604 095,72
4 6 b Para a Taxa de 12% 23 809,77 38 049 03 61 858,80 102 883,16 144 479,70 309 221,65 47 563,37 1 111,64 278,19 48 953,20	358 174,85

Arq Trec bwell

CONSULTORES

000136

QUADRO 4 5b(12%)
Estimativa Preliminar dos Parâmetros e Custos Globals Médios Atualizados do Traçado Atual com a Taxa de 12% (Estimativa Preliminar do Valor Atual dos Custos Globais e Médios da Água Transportada)

		T			Francisco Jati		ua (ransponada)		2ª Tracho	Salgado Piranha	s Annali		
									7 1100110	- Singano Francis	• Vhori	_	[
Orden	Discriminação das Obras e Custos	Contrato (Steam	t Sub-freche Nasunção + São Fren	arred Year Nove	2º Sub-Trecho	3° Sub-Trecho		Trecho]
ТУЦВП	Para 12 00%	1º Estágio	2ª Estágio	CISCON LEVE MOVE	Terra Nova /	Salgueiro /	TOTAL 1	Leilo Natural	1° Sub-Trecho Selgedo-Jetrana/	2º Sub-Trecho Umburana /	J° Sub-Trecho Bom Jesus IV/	TOTAL 2	TOTAL
ţ	1 41 2 2019	Braço Assunção /	São Francisco /	Total	Saigueno (PL)	Jeti (CE)	TOTAL T	Jat/SAlgade	Опекнали	Born Jesus IV	Major Sales	TOTAL 2	GERAL
		Terra Nova	Vermeltro			, ,		_	i '' '				(1 + 2)
 -	ICUSTO DE INVESTIMENTO	 											
	Canais	 											
	Custo do Investimento	66 287.40	23 607 41	89 894,61	54 149 15	117 380,98	261 424,94		40 629.00	42 808 12	133 639,03	217 076,15	478 501.09
1 16	Valor Atual do Investimento	78 696,40	14 199,86	92 898,26	64 285,87	139 354 70	296 536,83		48 234,75	50 821 80	158 656 26	257712,01	
	Valor Atual de Operação e Manutenção	5 462,08	1 161 48	6 623,57	4 461,89	9 672 19	20 757,65		3 347 83	3 527 39	11 011 86	17 887.07	
	Tuneis	1										*	
						13 786,08	13 788,08			2 590,00	21 820,00	24 410,00	38 196,08
1 2b	Valor Atual do Investimento	 				16 366 83	16 366,83 567,99			3 074 85	25 904 70	28 979,55	
120	Valor Atual de Operação e Manutenção Sitões e Aquediutos	 				307 99	207,39			106 71	898 98	1 005,69	1 573,68
	Custo de Investmento	5 317,40		5 317 40	12 531 00	5 210 00	25 058,40			6 355,00	235476	8 579.00	31 637,40
	Valor Alual do Investmento	4 160 33		4 160 33	9 804,25		13 964.59		· · · ·	0 333,00	2 224 00 1 740,06	1 740,06	15 704,63
1 3c	Valor Atual de Operação e Manutenção	157 93	· · · · · · · · · · · · · · · · · · ·	157 93	372 17		530,10				66 05	66,05	596,18
	Linhas de Transmissão	1											
	Custo do Investmento	2 045,62	888,91	2 934,53	1 247 54	342 36	4 524,43		1 000,00			1 000,00	5 524,43
	Valor Atual do Investmento	2 045,62	542 24	2 587 86	1 247 54	342 36	4 177,76		1 000 00			00,000 F	5 177,76
	Valor Atual de Operação a Manutenção	 						ļ					
	Drenagem e Obras Complementares Custo do Investmento	5 020(69)	1 226,79	6 247 48	3 426 32	6 479,51	16 153,31		4 062 90	6 457 80	T 348.70		
	Valor Atual do Investmento	5 960.56	736.07	7 417 61	4 067 73	7 692 47	19 177,21		4 823,47	7 666 70	1 348,70	11 869,40	28 022,71 33 268,56
	Valor Atual de Operação e Manutenção	413 70	60 36	514,79	282 33	533,91	1 331,03		334.78	532 12	11113	978,04	2 309,07
1.6	Barragens				-							3,0,04	2 303,07
	Custo do investimento	15 122 25 17 953,14	21 178 29	36 300,54	3 713 64	11 360 78	51 574,96		3 500 00	5 318 00	6 477 74	15 295,74	66 870,70
	Valor Atual do Investmento	17 953,14	12 738 74	43 096 00	4 408,83	13 724 96	61 229,79		4 155 20	6 313 53	7 690 37	18 159,10	79 388,90
	Valor Atual de Operação e Manutenção	1 246,07	1 041 97	2 991,16	306 00	952 61 3 668 60	4 249,78		288 40	438 20	533 77	1 260,37	5 5 10, 15
	Valor de Energia (Pardas por Evaporação e Enchimento)	1 460 90	698 23	2 159,13	595 69	3 668 00	6 422,82			1 111 64	278 19	1 389,83	7 812,65
	Custo de Investimento	24 750 00	38 115 00	62 865,00	100 832 00	118 435 60	282 132.60	L · · ·	49 088 00			49 088,00	331 220.60
175	Valor Atual do Investmento	20 921 18	18 874,55	53 139 78	85 233 29	100 113 61	238 486.69		41 494 09			41 494.09	
170	Valor Atual de Operação e Manutenção	3 108 60	3 075 88	7 895 84	12 664 50	14 875 51	35 435,85		6 165 45		···	6 165,45	41 601 31
170	Valor da Energia (Perdas por Evap le Enchimento) incluido no item 1 5d												
174	Valor da Energia (Bombeamento do Volume Faturável)	22 348 87	37 350 79	59 699,67	102 287 47	140 811,09	302 798,23		47 563 37			47 363,37	350 361 60
•	SUBTOYAIS	444 504		775-1843									
i	a Custo do Investimento b Valor Atual do Custo do Investimento	113 522,67 123 776,67	83 789,61 46 355,38	197 312,28 195 880,23	172 473,33 164 979 79	266 715,80 269 902,46	636 501,41 630 762,49		94 217,00	57 071,12	164 160,77	315 448,89	951 950,30
1	c Valor Atual de Operação e Manutenção	9 974,68	5 279.34	17 668,50	17 804,56	26 068.30	61 541.36		94 884,04 9 801.68	60 210 18 4 072 30	193 991 39	349 085,60 26 384,64	979 848,09
	d Valor do Custo de Energia	23 809,77	38 049 02	61 858 80	102 883,16	144 479 09	309 221.05		47 563,37	1 111,64	12 510,66 278,19	26 384,64 48 953,20	
	d Valor do Custo de Energia VALOR DOS CUSTOS TOTAIS	157 561,12	89 683 74	275 407,53	285 667,51	440 449 86			152 249 09	65 394,12	206 780,24	424 423,45	
2	CUSTOS MEDIOS DA TRANSPOSIÇÃO (p/volume	<u> </u>						·	102 235,00	90,004,12	100 700,24	727 723,43	<u>: 423 340,34</u>
L	equivalente a série de volume bombeada atualizados)	<u>. </u>				I	ì			i		j	
2 1	Volume equivalente ao valor atuat dos volumes bombeados m²x 10^6	18 739 96	18 739 96	18 739,96	18 739 96	18 739 96	18 739,96	8 389 49	8 389 49	8 389 49	8 389 49	8 389,49	18 739,96
2 2	Vator Atual dos Custos Médio (US\$/10°)												
	a Investimento Acumulado		4,47 10 53	10,53 10,53	9 20 19 73	14 23	33,96		11 23	6,80 52,00	19 57	37,60 71,57	50,80
J	Acumusado b Investimento Atualizado	000	10 53	10,53	19 73 8,80	33 96 14,40	33,96	33 96	45 20		71 57		
	Acumulado	6,60 6,60	2 47 9 08	9.08	17 68	32 28	33,66	32 28	11,31 43.59	7,18 50.77	23 12 73 89	41,61	52,29
	c Valor de Operação e Manutenção	0.53	0 28	0,94	0,95		3,28	32 20	117	50 77 0.49	1 49	73,89	/ FK
	Acumulado	0,53 0.53	0.81	0.81	176	1 39	3,16	3 16		4 81	6 30	3,14 6,36	4,69
i	d Energia	127	2,03 3,30	3 30 3 30	5,49	771	16,50		5 67	0 13	0 03	5,84	19,11
	Acumulado	1 27	3 30	3,30	B 79	16.50	16,50	16 50	22 17	22 30	22 34	22,34	
3	VALOR DOS CUSTOS TOTAIS (Médios)	8 41	4 79	14,70	15 24	23 50	53,44		18 15	7 79	24 65	50,59	76,09
4	VALOR DOS CUSTOS TOTAIS (Médios Acumulados)	8 41	13 19	13,19	28 44	51 94	51,94	51 94	70 09	77 88	102 53	102,53	76,09
4a	RELAÇÃO DOS CUSTOS MÉDIOS	100	1 00	1 00	0 99	0.96	0.98	0.98	0.91	0.91	0 94	0,94	0,96
5	CUSTO DE OPORTUNIDADE DAS PERDAS DAS BARRAGENS	· · · · ·			<u></u>		5,501		031	0,31	0.54	0,94	0,96
	RELATIVAS AO RESARCIMENTO DAS OBRAS	8 206,60	2 092,54	6 470,75	1 331,27	7 878,09	13 794,85	ļ	}	2 770.33	998,82	4 990,0B	18 784,94
6	VA DOS CUSTOS GLOBAIS (Médios Acumulados)	165 767,72	91 776,28	281 878 28	285 998.78	448 327,94	1 015 319.75		152 249.09	68 164,44	207 779.06	429 413,53	1 444 733,28
6 m	RELAÇÃO DO CUSTO TRAÇADO AJUSTADO/TRAÇ ORIGINAL	0,99	1.00	1.00	0,97	0,97	0,98		0.59	0.87	1.02	0,75	0,90
विद्रासम्ब			-,00		-101	-,071	0,00	J	0,03	0,011	1,023	0,/5]	0,90

QUADRO 4 5b(8%)
Estimativa Preliminar dos Parâmetros e Custos Globais Médios Atualizados do Traçado Atual com Taxa de 8% 、-(Estimativa Preliminar do Valor Aluat dos Custos Globais e Medios da Água Transportada)

					Francisco Jati		· · ·		2º Trecho	Salgado Piranha	s Apodí		-
1			1 Sub-Trecha	,	1				1	•			
Ordem	Discriminação das Obras e Custos	Captação (Braço A	Sturição + São Franc	ascol/ Tena Nova	2ª Sub-Trecho	3º Sub-Trecho		Trecho	1ª Sub-Trecho	2ª Sub-Trecho	3° Sub-Trecho		
	Para 8 00%	1° Estágio Graço Assunção / Terra Nova	2º Estágio São Francisco / Vermelho	Yotal	Tena Nova / Salgueiro (PE)	Salgueiro / Jab (CE)	TOTAL 1	Leilo Natural Jail/SAigado	Salgado Jituma/ Umburnos	Umburana / Born Jesus IV	Bons Jesus IV/ Major Sales	TOTAL 2	TOTAL GERAL (1 + 2)
\vdash	CUSTO DE INVESTIMENTO												
11	Canala												
1 18	Custo do Investmento	66 287,40	23 607,41	89 894,81	54 149,15 60 820 33	117 380,98	261 424,94		40 629 00	42 808 12	133 639,03 150 103 36	217 076,15	
	Valor Atual do Investimento	74 454 01	16 709 32	91 163,33	60 820 33	131 842 32	283 825,97		45 634 49	48 082 08	150 103 36	243 819,93	
	Valor Atual de Operação e Manutenção	7 901 46	1 952 33	9 853 79	6 454,58	13 991 81	30 300,18		4 842 98	5 102 73	15 929 77	25 875,48	56 175,66
1 12	Túneis Custo do Investimento	 				13 786,08	13 786.08		,	2 590 00	21 820 00	24 410.00	38 196,08
	Valor Atual do Investimento	 			· • · · • · · ·	15 464 53	15 484.53			2 909,09	24 508 22	27 417,31	42 901.84
	Valor Atual de Operação e Manutanção	· · · · · · · · · · · · · · · · · · · ·				821 65	821,65			154 36	1 300 47	1 454,84	2 276,49
	Sifoes e Aquedutos			•		· · · · · · · · · · · · · · · · · · ·							
	Custo do Investimento	5 317 40		5 3 17 40			23 058,40		Ť '	G 355 00		8 579,00	
1.36	Valor Atual de Investimento	4 391,64		4 391,64	10 349 35		19 043,93			5 248,59		7 085,40	26 129,33
1 3c	Valor Atual de Operação e Manutenção	245 66		245,66	578 93	240 70	1 065,30			293 60	102 75	26,36	1 461,65
	Linhas de Transmissão Custo do investimento	2 045,62	888 91	2 934,53	1 247 54	342 36	4 524,43		1 000 00			1 000,00	5 524,43
	Valor Atual do Investimento	2 045 62		2 650,61	1 247 54	342 36	4 240.51		1 000 00		 	1 000,00	5 240,51
1 4c	Valor Atual de Operação e Manutenção		. 09,00	<u></u> -		0 12 50	4 240,01		1 000,00	• • • •			
15	Drenagem e Obres Complementares												
1.5e	Custo do investimento	5 020 69	1 226 79 868 32	6 247,48	3 426 32		16 153,31		4 062 90	6 457,80		11 869,40	28 022,71
156	Valor Atual do Investimento	5 639 24		7017,17	3 848 44		18 143,40		4 563 45			13 331,71	
	Valor Atual de Operação e Manutenção	598 47	101 46	744,70	408 42	772 36	1 925,47		484 30	769 77	160 77	1 414,83	3 340 31
1 6a	Barragent Custo do Investimento	15 122 25	21 178 29	36 300.54	3 713 64	11 560.78	51 574 96		3 500 00	5.3 (8.00)	6 477 74	····15 295.74	66 870.70
	Valor Atual do Investmento	16 985 31	14 989 99	40 772 77	4 171 16	12 985 07	57 929 00	···	3 931 20	5 973,18	7 275 80	17 180 18	75 109,17
1 6c	Valor Atual de Operação a Manutenção	1 802 57	1 751 44	40 772,77 4 327,02	4 171,16 442 67	1 376 04	6 147,74		417 20	633 91	772 15	1 823,25	7 970,99
1 6d	Valor da Energia (Perdas por Evaporação e Enchimento)	1 460 90	698 23	2 159,13	595 69	3 668 00	6 422,62	··· · · · · · · · · · · · · · · · · ·		1 111 64	278 19	1 389 83	7 812,65
	Elevatórias												
	Custo do investimento	24 750 00	38 115 00	62 865,00	100 832 00	118 435 60	282 132,60		49 088 00			49 008,00	331 220,60
	Valor Atual do Investimento	21 604 28 4 784 18	23 475 03 5 431 39	54 874,86 12 151 80	88 016 25	103 382 44	246 273,55 54 536,23		42 848 92			42 848,92	289 122,46
	Valor Alual de Operação e Manutenção Valor da Energia (Perdas por Evap e Enchimento) incluido no item 1 6d	4 / 04 10	3 4 3 1 19	12 151 80	19 490 83	22 893 60	94 536,23		9 488 71		l	9 488 71	64 024,94
178	Valor da Energia (Bombeamento do Volume Falurável)	22 348 87	37 350 79	59 699 67	102 287,47	140 811 09	302 798 23		47 563 37			47 563,37	350 361,60
	SUBTOTAIS				102 201 111				47 555 57			1, 000,5.	335 551,55
	a Custo do Investimento	113 522,67	83 789 61	197 312,28	172 473,33	266 715,80	636 501,41		94 217,00	57 071,12	164 160,77	315 448,89	951 950,30
	b Valor Atual do Custo do Investimento	119 480,85	55 779,34	193 853,21	164 604,63	268 339 64	626 797,49		93 414,61	62 212,94	185 724,18	339 551,73	966 149,22
	c Valor Atual de Operação e Manutenção	14 733,87	9 135,16	26 578,28	26 967,00		92 871,10		14 748,89	6 184,60		39 038,63	131 909,72
	d Valor do Custo de Energia VALOR DOS CUSTOS TOTAIS	23 809,77 158 024,50	38 049,02 102 963,53	61 858,80 282 290,29			309 221,05		47 563,37	1 111,64		48 953,20	
<u> </u>	CUSTOS MEDIOS DA TRANSPOSIÇÃO (p/volume	136 024,30	10% 203'23	202 290,29	294 454,79	452 144,55	1 028 889,63		155 726 87	69 509,18	202 107,51	427 343,56	1 456 233,19
	eguivalente a série de volume bombeada atualizados)					1							
2 1	Volume equivalente ao valor atual dos volumes bombeados nºx 10*6	31 715 80	31 715 80	31 715 80	31 715 80	31 715 80	31 715,80	14 373 92	14 373 92	14 373 92	14 373 92	14 373 92	31 715,80
2 2	Valor Atual dos Custos Médio (US\$/101)												
ļ	a Investimento	3 58	2,64 6 22	5 <u>,22</u> 6,22	5,44		20,07		6,55 26 62	3 97	11,42	21,95 42,01	30,02
1	Acumulado	3 58	6 22	6,22	11'66		20,07	20 07	26 62	30 59	42 01	42,01	
Į.	b Investimento Atualizado	3,77	1,76 5 53	6,11			19,75 19,18		6,50 25 68	4,33 30 00	12,78 42,79	23,61 42,79	30,46
ŀ	Acumulado	0 46	5 53 0 29	5,53				19 18					
	c Valor de Operação e Manutenção Acumulado	0 46	0 29	0,84 0,75	0.85	1 24 2 84	2,93 2 84	2 84	1 03 3 87	0 43 4 30		2,72 5,56	4,16
	d Energia	0 40	1 20	195		4 56		2 04	3 31	4 30 0 08	0 02	3,36	11,29
1	Acumulado	0 75	1 95	1,95			9,75 9,75	9 75		13 14	13 16	13,16	,23
3	VALOR DOS CUSTOS TOTAIS (Médios)	4 98	3 25	8,90	9 28	14 26	32,44		10 83	4 84	14 06	29,73	45,92
4	VALOR DOS CUSTOS TOTAIS (Médios Acumulados)	4 98	8 23	8,23	17 51	31 77	31.77	31 77		47 44	61 50	61.50	45,92
4.0	RELAÇÃO DOS CUSTOS MÉDIOS	0 91	0.86	0.86	0,82	0.82	0.82	0.82		0.80	0.84	0.84	0,83
5	CUSTO DE OPORTUNIDADE DAS PERDAS DAS BARRAGENS	331	5,50	5,00	5,02	0,02	0,02	0,62	. 3,78	0.80	0.04	3,04	7,83
Γ !	RELATIVAS AO RESARCIMENTO DAS OBRAS	8 235,03	2 247.67	6 950.44	1 412,73	8 284.07	14 505,74			2 902,88	1 022,31	5 107,42	19 613,16
6	VA DOS CUSTOS GLOBAIS (Médios Acumulados)	166 259,53	105 211.19	289 240,73	295 867,52		1 043 395.37		155 726,87	72 412,06	203 129,82	432 450,97	
6.	RELAÇÃO DO CUSTO TRAÇADO AJUSTADO/TRAC. ORIGINAL	0.92	0 80	0.88			0.82		0,57	0.95	1.02	0.76	0,80
THE PARTY	William Control of the Control of th	1	1 30	7,00	2,10	0,31	V ₁ 32]		0,01	V,35	1,02	0,70	0,80

QUADRO 4.5

Análise Comparativa de Parâmetros Técnicos e de Custos do Projeto Atual com o Traçado Ajustado X Traçado do Anteprojeto

			Projeto Atual c	om o Traçado d Aurora e 40 Ba		Projeto At (Capt Jus Auro	tual c/Traçado . ra e 21 Barrage		Comparativo do Pr Atual com Traçado A	ljustado
(1:		Donate	Trecho 1	Trecho 2	TOTAL	Trecho 1	Trecho ?	TOTAL	e o Projeto com Tra do Anteprojeto	<u>o</u>
Item		Discriminação			(ou Max)			(ou Max)	Quantidades	%
11	VAZÕES	Qinicial - 1ª Fase (m³/s)	70,00	30 00	70,00	70 00	30 00	30 00		
		QFinal de Plano (m³/s)	180,00	85 00	180,00	180,00	85,00	85 00		47 22
2	ALTURA MANOMETRICA	A Acumulada Total (m c a)	172,00	33,00	205 00	172 00	55,00	227,00	22,00	
ſ		Média Ponderada no Trecho (m c a)	96,00	33,00	——. : <u></u>	96 00	55 00		L	
<u></u>	DE BOMBEAMENTO	Média Ponderada Acumulada (m c a)	96,00	129 00	106,00	96,00	151,00	114,00	8 00	
3	COMPONENTES PRINCI								<u> </u>	
31	Canais incluindo Sifões e /	Aquedutos (km)	87 45	86 80	174,25	87 45	100 55	188 00	13,75	107 89
3.2	Tuneis (km)		1,51	7,99	9 50	1 51	5 25	6 76		71 16
3 3	Barragens	Quantidades (ud)	20,00	20 00	40 00	15,00	4,00	19,00		47,50
!		Área Inundada (ha)	6 497,00	6 361,00	12 858 00	4 904 00	345,00	5 249,00		40,82
1		Volume Acumulado (m³ x 10³)	370 840,00	520 920 00	891 760 00	265 860 00	21 490 00	287 350,00		32,22
1	}	Volume Anual de Perdas por Evaporação (mºx10º)	111 932,22	81 849 79	193 782 01	84 415 87	4 600 95	89 016,82	-104 765 19	45,94
		Vazão Cont Eq as Perdas de Evaporação (m²/s)	3,55	2 60	6,15	2 68	0 15	2 83	-3 32	46 02
		Vazão Cont Eq as Perdas de Enchimento (m³/s)	1 43	2,00	3 43	1 02	0.08	1 10		32 07
i		Nº de Familias Relocadas	433 00	424 00	857 00	327,00	23,00	350,00		40,84
L	<u> </u>	Tempo de Enchimento p/Qinicial (dias)	59 00	200 97	259,97	38,00	8,29	46,29	-213 68	17 81
34	ELEVATÓRIAS	Quantidades (ud)	4 00		4 00	4,00	1 00	5 00		125 00
l .		Potência Instalada (MW)	363 21	33 00	396,21	363,21	55 00	418,21	22 00	105,55
4	ELEMENTOS DE CUSTO	S GLOBAIS MEDIOS (p/12,00%)								
4 1	Custos de Investimentos (639 019 91	341 510,46	980 530 37	636 501 41	315 448 89	951 950 30	-28 580,07	97 09
4 2	VA do Investimento (US\$ >	(10 ⁷)	642 090,24	394 112,80	1 036 203 04	630 762 49	349 085 60	979 848 09	-56 354,95	94 56
4 3	VA da Operação e Manute	inção (US\$ x10°)	62 458 42	27 626 42	90 084 84	61 541 36	26 384,64	87 926,00	2 158 84	97,60
4 4	Energia de Bombeamento		9 973,28	25 257,21	35 230 49	6 422 82	1 389 83	7 812 65	-27 417 84	22 18
45	Energia de Bombeamento	dos Volumes Faturaveis (US\$ x10³)	302 798 23	28 538,02	331 336 25	302 798 23	47 563 37	350 361 60	19 025,35	105 74
4 6	VA dos Custo Totals (US		1 017 320,17	475 534,45	1 492 854,62	1 001 524,90	424 423,44	1 425 948,34	-66 906,28	95,52
4.7		s Perdas das Barragens (US\$ x10³)	21 568 50	94 421 22	115 989 72	13 794 85	4 990,08	18 784,93	-97 204 79	16,20
48	VA dos Custo Totais incl	ulndo o item 4 7 (US\$ x10²)	1 038 888,67	569 955,67	1 608 844,34	1 015 319,75	429 413,52	1 444 733,27	-164 111,07	89,80
49	Volumes Faturáveis (m² x		18 739,96	8 389,49	18 739,96	18 739,96	8 389,49	18 739 96		100 00
4 10		água transportada até o trecho)	52,78	109,46	79 66	51 94	102 53	76,09	-3,57	95 52
5	ELEMENTOS DE CUSTO	S GLOBAIS MEDIOS (p/8,00%)		· · · · · · · · · · · · · · · · · · ·						$\overline{}$
5 1	Custos de Investimentos (1	US\$ x10³)	639 019 91	341 510 46	980 530,37	636 501,41	315 448,89	951 950,30	-28 580 07	97,09
5 2	VA do Investimento (US\$)	(10°)	632 756,06	375 296,67	1 008 052 73	626 797 49	339 351 73	966 149 22	-41 903,51	95 84
5 3	VA da Operação e Manute	mcão (US\$ x10²)	93 939,80	40 330,07	134 269 87	92 871,10	39 038,63	131 909,73	-2 360,14	98,24
5 4	Energia de Bombeamento		12 916,42	31 621,52	44 537.94	6 422 82	1 389 83	7 812 65		17.54
5 5		dos Volumes Faturáveis (US\$ x10²)	512 460 40	48 894 90	561 355,30	302 798.23	47 563,37	350 361,60		62,41
5 6	VA dos Custo Totals (US		1 252 072,68	496 143,16	1 748 215,84	1 028 889,64	427 343,56	1 456 233,20		83.30
57		s Perdas das Barragens (US\$ x10°)	17 342,14	72 976.27	90 318 41	14 505,74	5 107 42	19 613 16		21 72
58		uindo o item 5 7 (US\$ x10²)	1 269 414,82	569 119,43	1 838 534,25	1 043 395,38	432 450.98	1 475 846.36		80,27
59	Volumes Faturáveis (m³ x		31 715,80	14 373,92	31 715,80	31 715 80	14 373 92	31 715 80	-502 057,03	100.00
5 10		agua fransportada até o frecho)	38 81	73 82	55 12	31 77	61 50	45 92	-9 20	83 31

ANEXOS

ANEXOS

ANEXO	1: DES	ENHOS
-------	--------	-------

ANEXO 1 1 MAPAS GERAIS

Mapa 1 Lay-Out Geral do Anteprojeto e Alternativas de Ajuste de Traçado - Trecho 1 (Escala 1 100 000)

Mapa 2 Lay-Out Geral do Anteprojeto e Alternativas de Ajuste de Traçado - Trecho 2 (Escala 1 100 000)

Mapa 3 Lay-Out Geral do Projeto Ajustado (Escala 1 100 000)

ANEXO 1 2 LAY-OUT'S DAS ALTERNATIVAS DE CANAIS X BARRAGENS DO ANTEPROJETO

Trecho 1

1)	Barragem Barro Vermelho	E	9) Barragem Negreiros	М
2)	Barragem Angicos	М	10) Barragem Cerrado	М
3)	Barragem Mana Preta	М	11) Barragem Tanajura	E
4)	Barragem Marı	М	12) Barragem Sauva	М
5)	Barragem Terra Nova	М	13) Barragem Severino	Ε
6)	Barragem Portela	E	14) Barragem Padre Cicero	Ė
7)	Barragem Barra	М	15) Barragem Água Benta	M
8)	Barragem Mangueira	R	16) Barragem Milagres	М

Trecho 2

1)	Barragem Aurora I	* E	11)	Barragem Bom Jesus I	E
2)	Barragem Antas	* E	12)	Barragem Bom Jesus II	Ε
3)	Barragem Tipi	* E	13)	Barragem Bom Jesus III	E
4)	Barragem Pau Branco	* E	14)	Barragem Bom Jesus IV	М
5)	Barragem Jitirana	* E	15)	Barragem Bom Jesus V	Ë
6)	Barragem Umburana	М	16)	Barragem Bom Jesus VII	М
7)	Barragem Felizardo	E	17)	Barragem Santa Helena	М
8)	Barragem Cachimbo I	Ë	18)	Barragem Santa Helenalli	Ē
9)	Barragem Cachimbo II	E	19)	Barragem Poço	E
10)	Barragem Cachimbo III	E			

ANEXO 1.3 PLANTA E PERFIL DO TRAÇADO AJUSTADO (ESCALA H = 1 20 000 E V = 1 1 000)

Trecho 1 São Francisco - Jati

Parte 1 7 000 a 2 865

Parte 2 2 665 a 4 150

Parte 3 4 020 a 6 787

Trecho 2 Salgado - Piranhas - Apodi

Parte 1 0,00 a 3 220

Parte 2 3 200 a 5 250

Parte 3 5 150 a 6 766

ANEXO 2: MEMÓRIAS DE CÁLCULO

ANEXO 2.1 ESTIMATIVA DE CUSTOS DAS SECÇÕES TIPO DE CANAIS E CURVAS DE CUSTOS

Quadro A2 1 1 a A2 1 30 - Estimativa de Custos das Seções Tipo,

Quadro A2 1 31a a A2 1 50a - Curvas de Custos (Custo x Altura)

ANEXO 2 2 ESTIMATIVA DE CUSTOS DAS SECÇÕES TIPO DE AQUEDUTOS E SIFÕES

Onde.

E = Barragem Eliminada,

M = Barragem Mantida;

R = Barragem Reduzida.

 * Eliminada em razão da nova localização da captação no rio Salgado à jusante do barramento Aurora que foi descartado para a Transposição.

ANEXO 1 - DESENHOS

ANEXO 1.1 - MAPAS GERAIS

MAPA 1: LAY-OUT GERAL DO ANTEPROJETO E ALTERNATIVAS DE AJUSTE DE TRAÇADO - TRECHO 1 (ESCALA 1:100.000)

MAPA 2: LAY-OUT GERAL DO ANTEPROJETO E ALTERNATIVAS DE AJUSTE DE TRAÇADO - TRECHO 2 (ESCALA 1:100.000)

MAPA 3: LAY-OUT GERAL DO PROJETO AJUSTADO

(ESCALA 1:100.000)

ANEXO 1.2 - LAY-OUT'S DAS ALTERNATIVAS DE CANAIS X
BARRAGENS DO ANTEPROJETO

LAY-OUT DAS ALTERNATIVAS

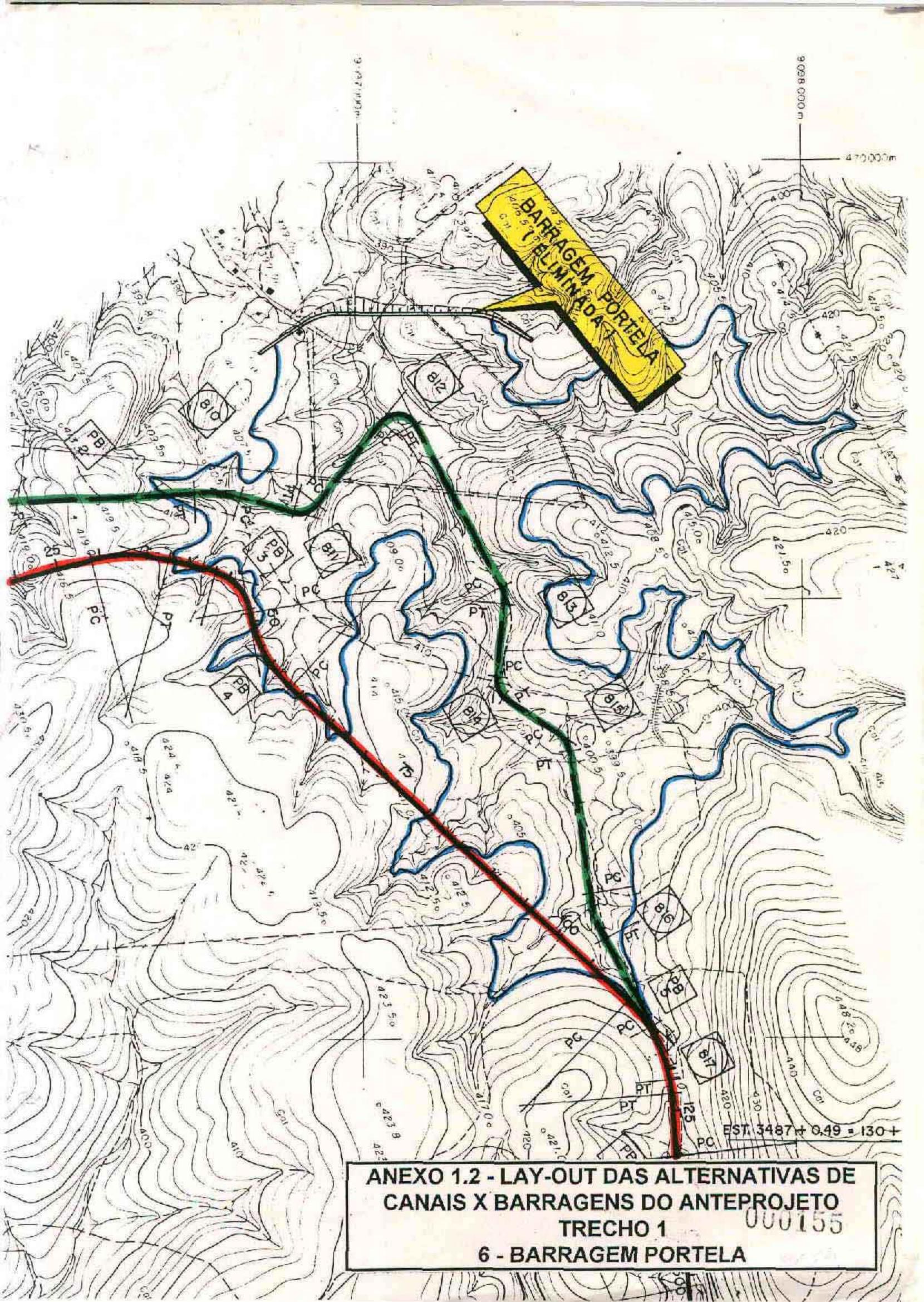
CANAIS X BARRAGENS DO ANTEPROJETO

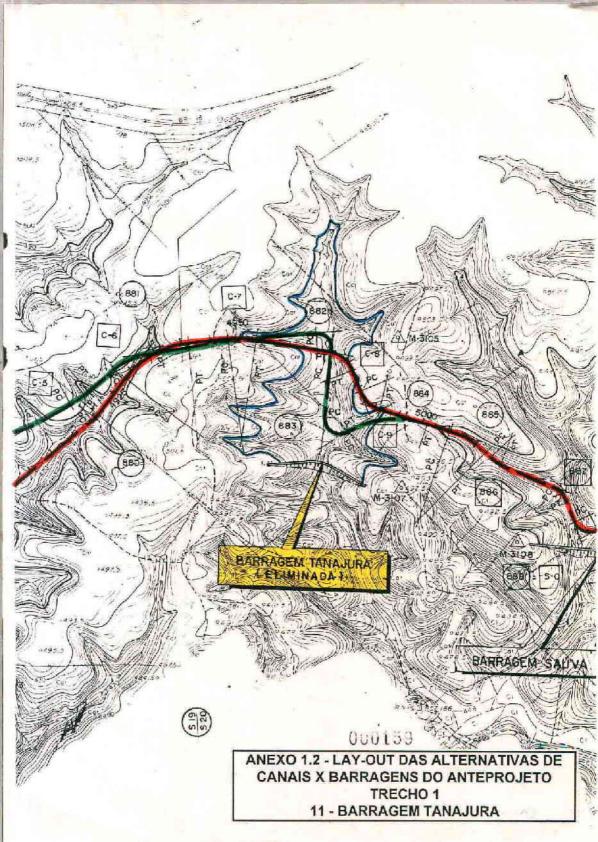
ANEXO 1.2 - TRECHO 1

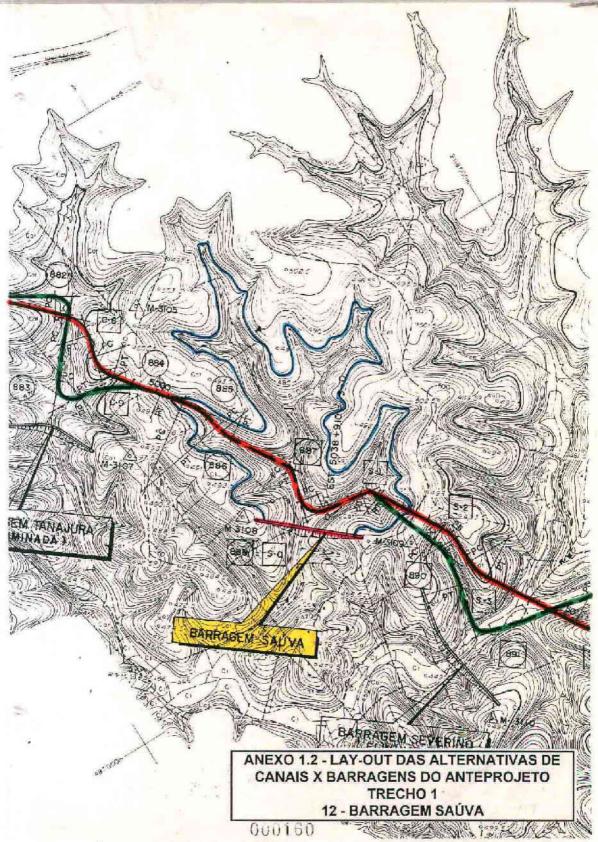
Barragens

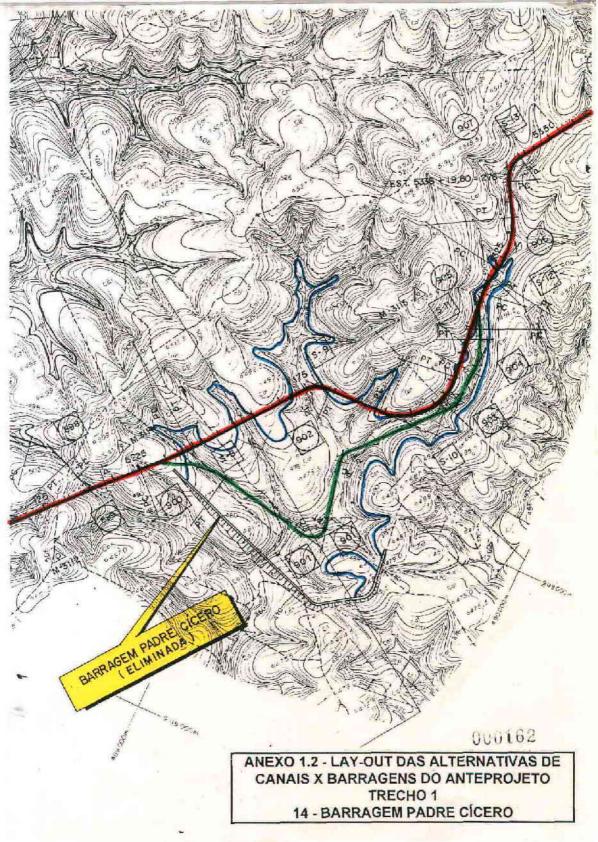
1) Barragem Barro Vermelho	E	9) Barragem Negreiros	M
2) Barragem Angicos	М	10) Barragem Cerrado	M
3) Barragem Maria Preta	М	11) Barragem Tanajura	E
4) Barragem Marí	М	12) Barragem Saúva	М
5) Barragem Terra Nova	М	13) Barragem Severino	E
6) Barragem Portela	E	14) Barragem Padre Cícero	E
7) Barragem Barra	М	15) Barragem Água Benta	М
8) Barragem Mangueira	R	16) Barragem Milagres	M

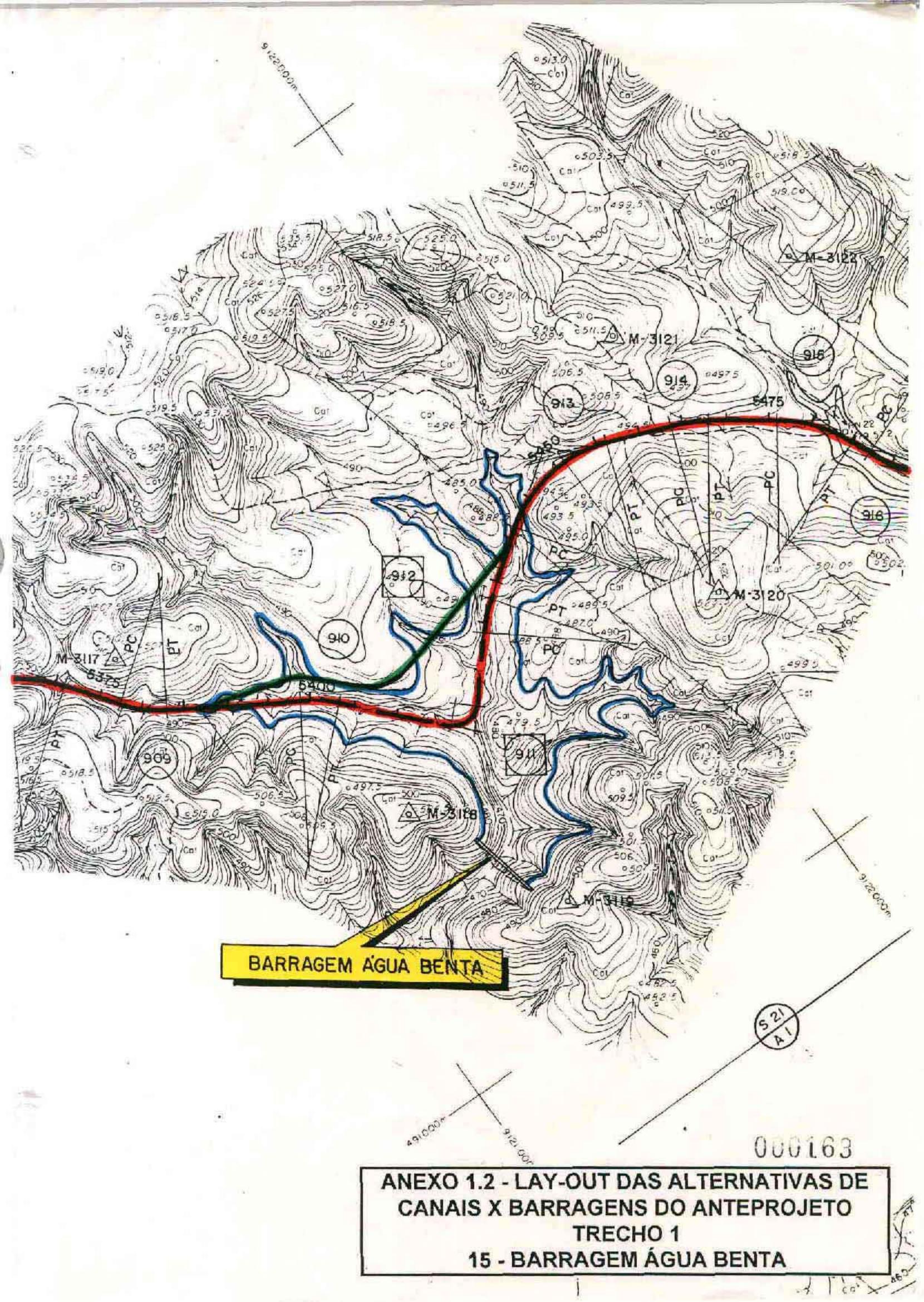
Опde:


E = Barragem Eliminada;


M = Barragem Mantida;


R = Barragem Reduzida.


LEGENDA


	Barragem Eliminada
The same	Barragem do Projeto Definitivo
	Traçado Eliminado
	Traçado Definitivo
	Pl's do Traçado Eliminado e/ou Ligação no Interior das Barragens
	Pl's do Traçado Original Confirmado
	Pl's do Traçado Ajustado

LAY-OUT DAS ALTERNATIVAS

CANAIS X BARRAGENS DO ANTEPROJETO

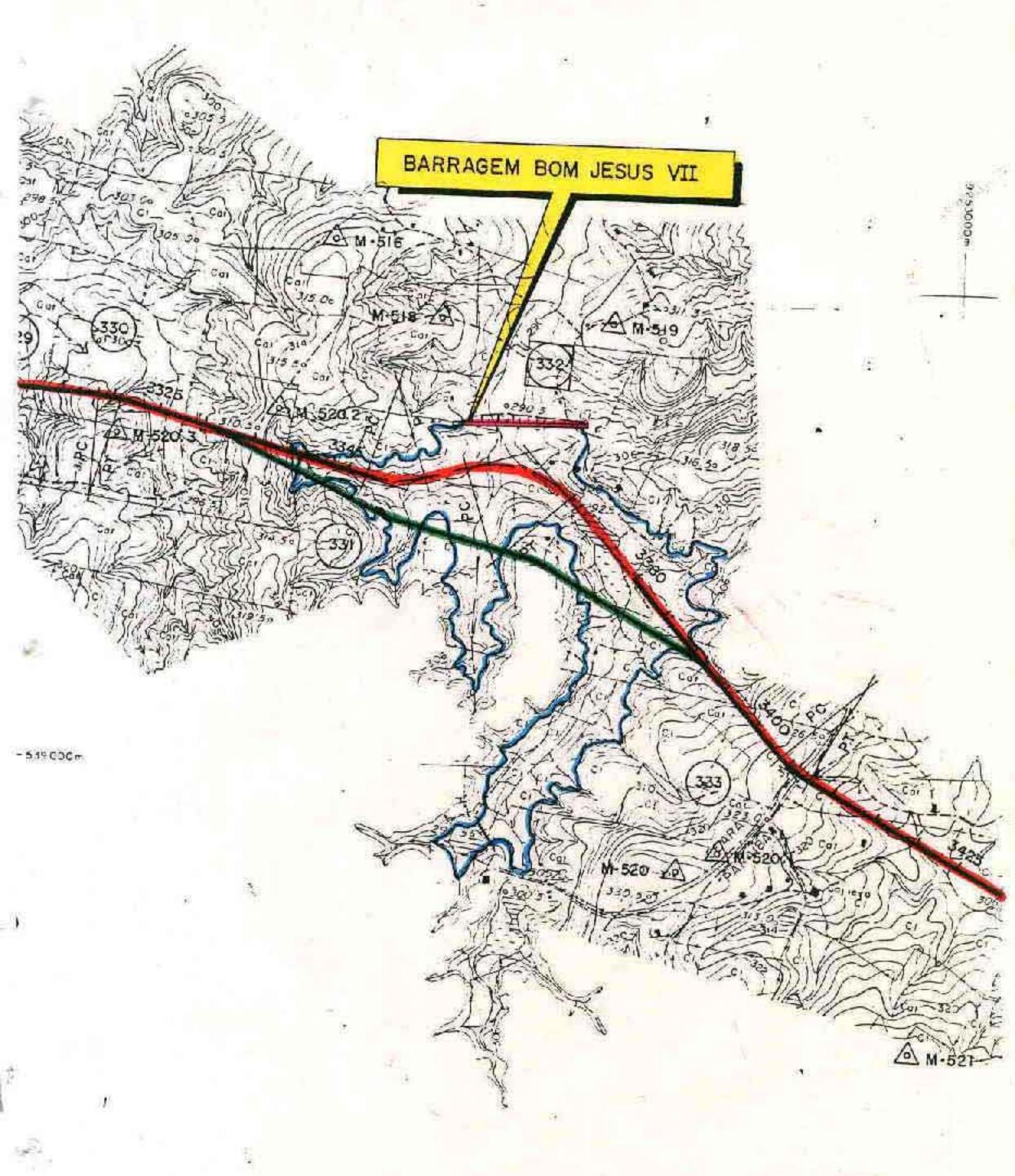
ANEXO 1.2 - TRECHO 2

Barragens

4)	Parragem Aurere I	*	Е	44) D D I I	
1)	Barragem Aurora I			11) Barragem Bom Jesus I	E
2)	Barragem Antas	*	Е	12) Barragem Bom Jesus II	Ε
3)	Barragem Tipi	*	Е	13) Barragem Bom Jesus III	E
4)	Barragem Pau Branco	*	Е	14) Barragem Bom Jesus IV	M
5)	Barragem Jitirana	*	Е	15) Barragem Bom Jesus V	E
6)	Barragem Umburana		M	16) Barragem Bom Jesus VII	M
7)	Barragem Felizardo		Е	17) Barragem Santa Helena	M
8)	Barragem Cachimbo I		E	18) Barragem Santa Helena III	Е
9)	Barragem Cachimbo II		Е	19) Barragem Poço	E
10)	Barragem Cachimbo III		Е		

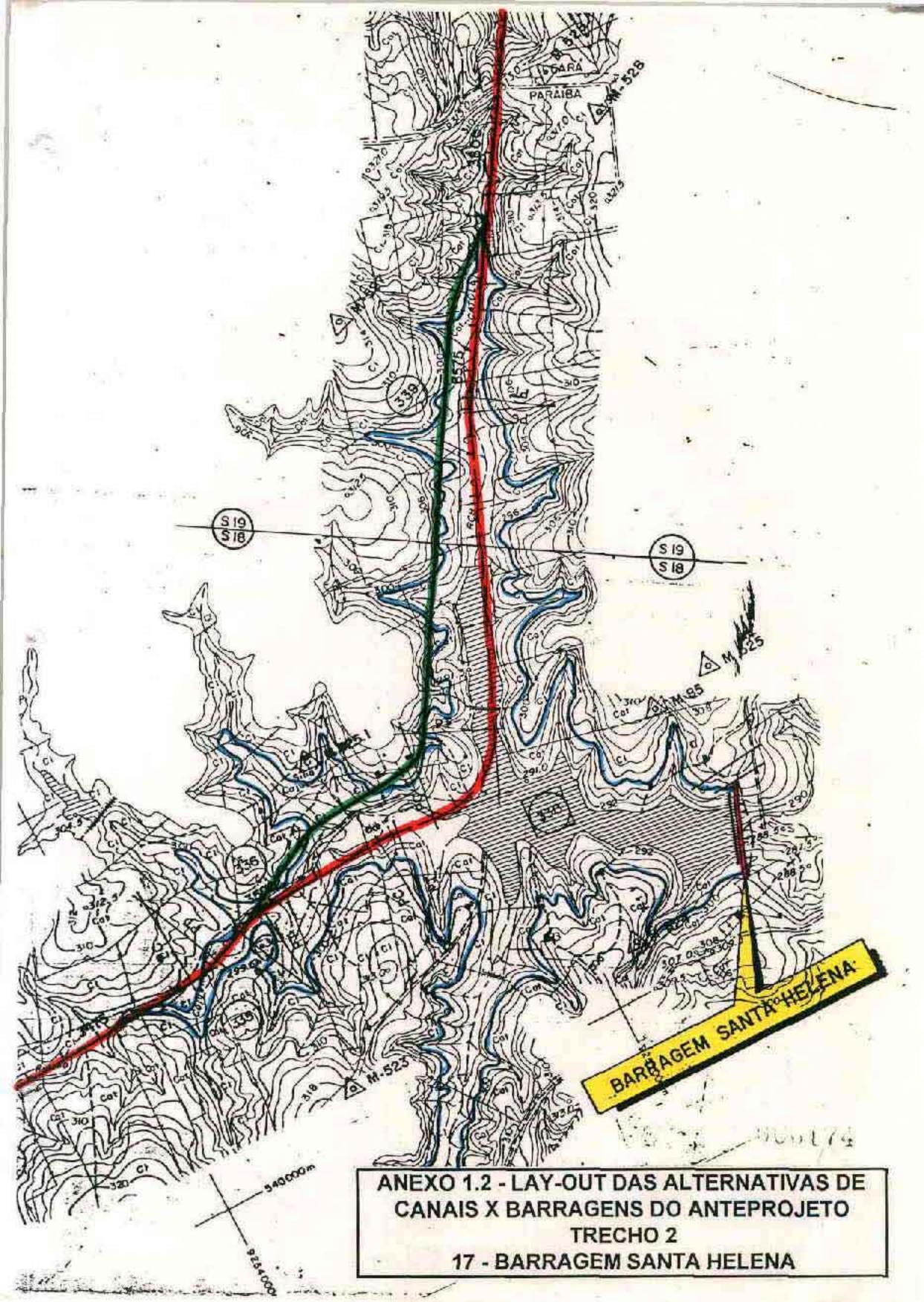
Onde:

E = Barragem Eliminada;


M = Barragem Mantida;

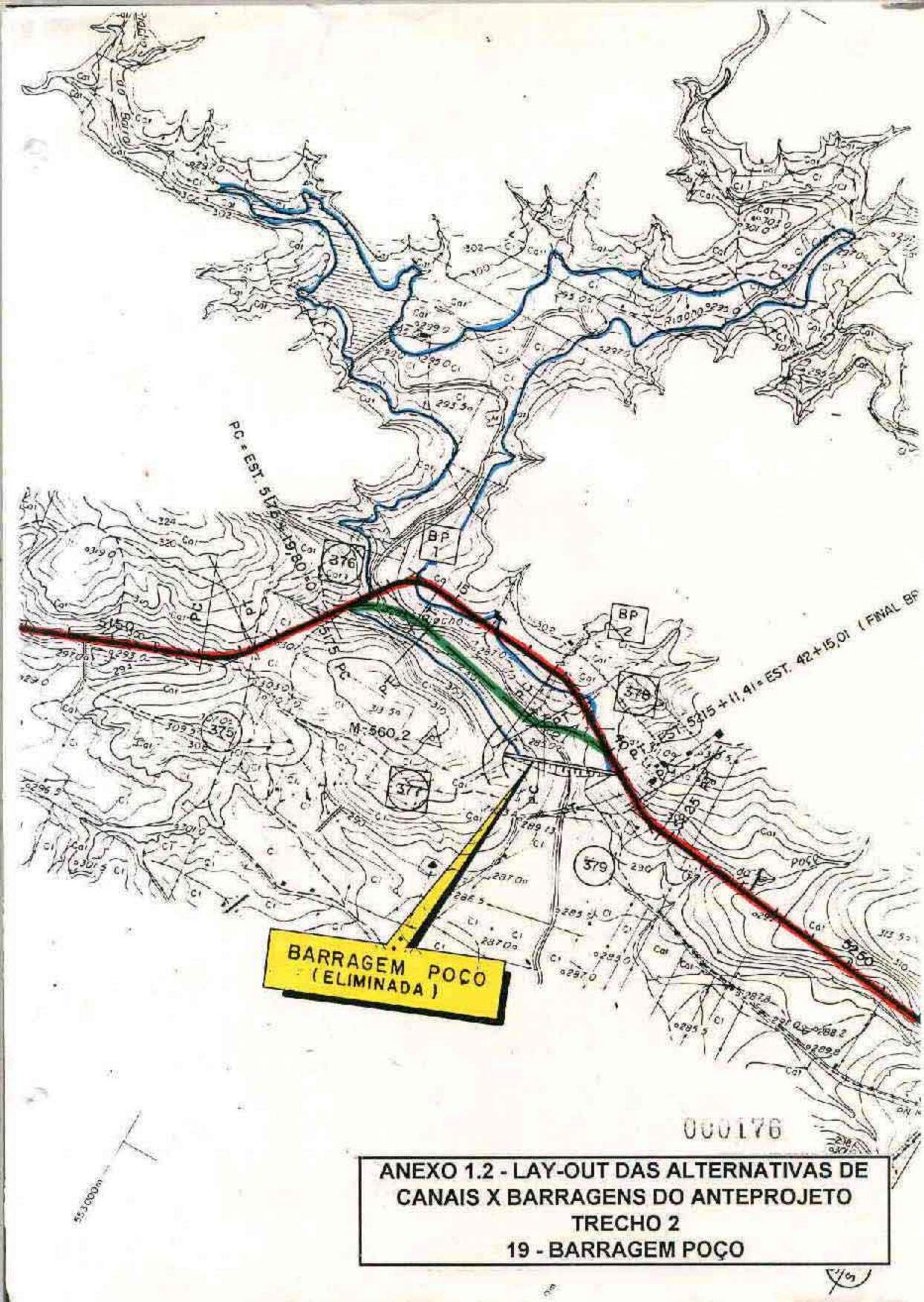
R = Barragem Reduzida.

^{*} Eliminada em razão da nova localização da captação no rio Salgado à jusante do barramento Aurora que foi descartado para a Transposição.


LEGENDA


The same	Barragem Eliminada
The same	Barragem do Projeto Definitivo
	Traçado Eliminado
	Traçado Definitivo
	Pl's do Traçado Eliminado e/ou Ligação no Interior das Barragens
0	Pl's do Traçado Original Confirmado
	Pi's do Traçado Ajustado

000173


ANEXO 1.2 - LAY-OUT DAS ALTERNATIVAS DE CANAIS X BARRAGENS DO ANTEPROJETO TRECHO 2 16 - BARRAGEM BOM JESUS VII

ANEXO 1.2 - LAY-OUT DAS ALTERNATIVAS DE CANAIS X BARRAGENS DO ANTEPROJETO TRECHO 2

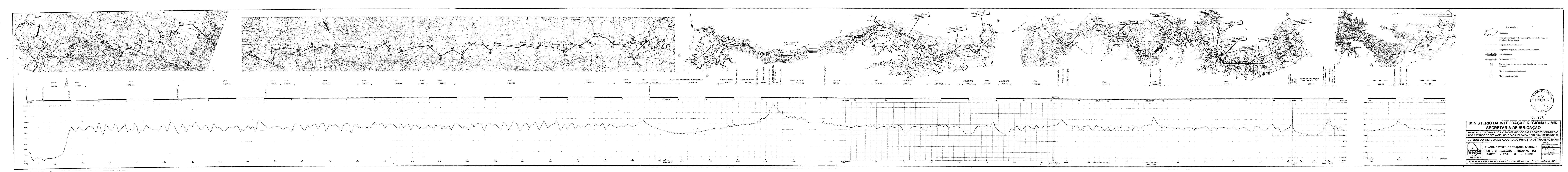
18 - BARRAGEM SANTA HELENA III

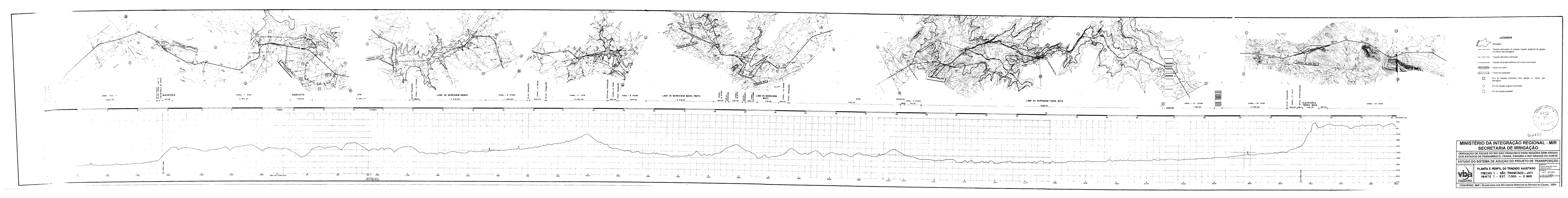
ANEXO 1.3: PLANTA E PERFIL DO TRAÇADO AJUSTADO

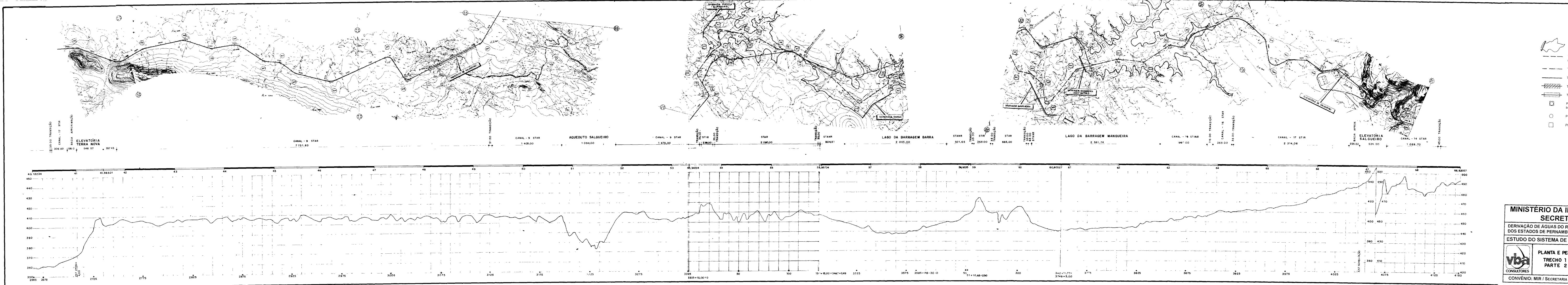
(ESCALA: H = 1: 20.000 E V = 1: 1.000)

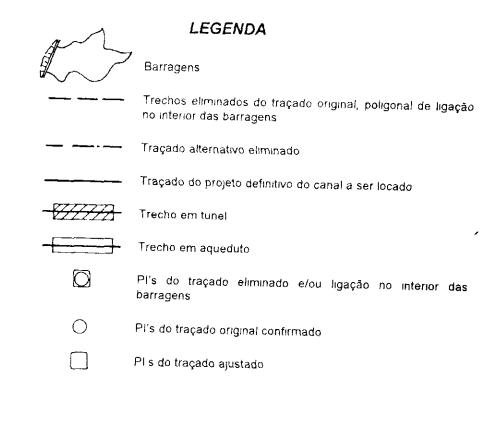
TRECHO 1: SÃO FRANCISCO - JATI

PARTE 1: 7.000 A 2.865 PARTE 2: 2.665 A 4.150

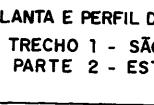

PARTE 3: 4.020 A 6.787


TRECHO 2: SALGADO - PIRANHAS - APODI

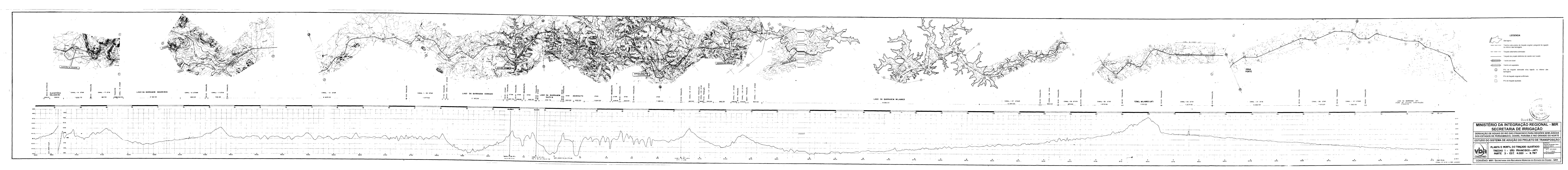

PARTE 1: 0,00 A 3.220

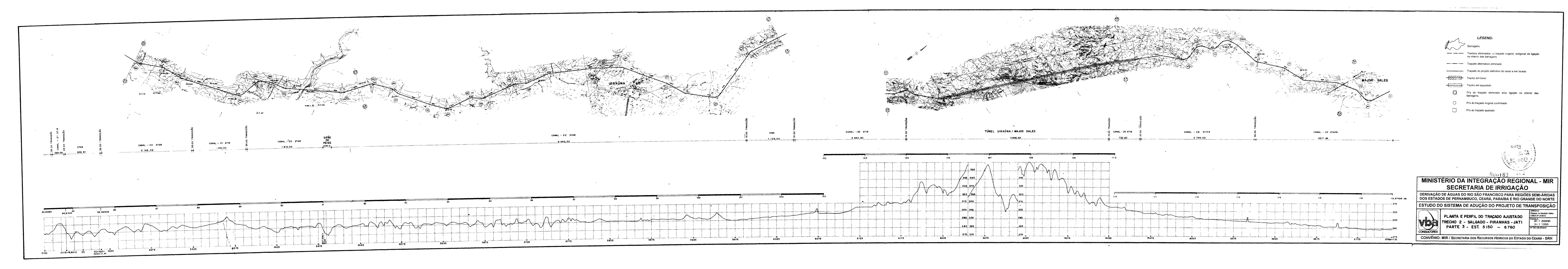

PARTE 2: 3,200 A 5,250

PARTE 3: 5.150 A 6.766








ESTUDO DO SISTEMA DE ADUÇÃO DO PROJETO DE TRANSPOSIÇÃO

CONVÊNIO: MIR / SECRETARIA DOS RECURSOS HIDRICOS DO ESTADO DO CEARÁ - SRH

ANEXO 2: MEMÓRIAS DE CÁLCULO

ANEXO 2.1: ESTIMATIVA DE CUSTOS DAS SECÇÕES TIPO DE CANAIS E CURVAS DE CUSTOS

QUADRO A2.1.1 A A2.1.30 - ESTIMATIVA DE CUSTOS DAS SEÇÕES TIPO QUADRO A2.1.31A A A2.1.50A - CURVAS DE CUSTOS (CUSTO X ALTURA)

ANEXO 2.2: ESTIMATIVA DE CUSTOS DAS SECÇÕES TIPO DE AQUEDUTOS E SIFÕES

QUADRO A2 2 1 - ESTIMATIVA DE CUSTOS DE PONTE CANAL PARA ALTURA DE PILAR = 5 m

PONTE CANAL (h = 0,75)

Q (m3/s)	m = 0,0	005 Retangula	√(<i>m</i> /s)	Freeboard Total (m)	Altura do Canal (m)	Espessura das Vigas (m)	Largura Externa do Canal (m)	Peso da Água (ton)	Volume do Concreto do Canal (m3)/m	Volume do Concreto do Pijar (m3)	Peso Total (ton)	Volume da Sapata R\$/(m3) -3,00	Volume do Concreto Total R\$/(m3) 218,98	Momento (kg x m)	d (minima) (m)	b (minima) (Vigas)	(Escoramento) R\$/(m3) 3 40	Volume de Escavação R\$/(m3) 4 76	Forma R\$/(m2) 11,27	Sub-Total R\$	Obras e Serviços Complementares R\$	Custo Total R\$
10,00	2,78	2,08	1 73	.06	3 14	0.19	3.16	8,72	1,91	8,54	426 19	<u>5.</u> 31	71,17	1 594 043 54	2,95	0.38	474,56	58.73	672,36	834.64	166,93	1 001,57
15.00	3 23	2 42	.92	, 06	3 48	9,23	3,68	11,25	2,51	9,94	550,60	7,99	93.26	2 070 884,11	3.11	0,40	552,49	75,91	761,69	1 340 81	208,16	1 248 97
20 00	3 80	2 70	2,06	1,06	3 76	3,25	4 10	13 53	3,05	11.DB	562 68	10 71	113 42	2 500 264,80	3 24	0.41	615,43	91 33	834 19	1 224 47	244 89	469,36
25.00	3.91	2 93	2,18	1 06	3,99	0,27	4,46	15.63	3,56	12,04	766,12	13,46	132,32	2 898 023,51	3.35	7,42	669.14	105,58	995 89	1 393.62	278 72	672,35
30,00	4,19	3,14	2.28	1.08	4,20	0.29	4.78	17,61	4,04	12,90	863.37	18.24	150,28	3 272 556 40	3 44	0,42	716.49	118.98	950.29	1 552 41	310.48	1 862 89
45.00	4.88	3,66	2 52	1.10	4 76	0 34	5.56	23,24	5,38	15,01	1 137.56	24,91	201.38	4 331 338 69	3,67	0 43	834,15	156,77	1 090,25	1 996,43	399,29	2 395 72
50,00	5 07	3.81	2.59		4 92	0,36	5 79	24.95	5,80	15,52	1 222,47	27,85	217.47	4 659 705,37	3.73	0,43	867,77	168 47	1 130,07	2 134,19	426,84	2 561 03
55.00	5 26	3.94	2,65	1,12	5,06	0,37	6,00	25.64	6,21	15,19	1 305,11	30.81	233,22	4 979 499,88	3.79	3,44	899 35	179,85	1 187 54	2 258 35	453,67	7 2 722 02
75 00	5 91	4 43	2,86	1 17	5 60	0,41	6 74	33 09	7,76	48 18	1 620 21	42 97	293 98	6 200 572 67	3 99	0 44	1 010 27	223 29	1 300 97	2 780 07	556 01	3 336 C8
100,0C	6.58	4,94	3 08	1 23	6 17	0 46	7,5c	40,58	9,56	20.26	1 985,07	58,64	365,74	7 616 804,97	4,19	0.45	1 125,38	273,57	1 440,38	3 375,84	675,17	4 051,01
110,00	6.62	5,12	3,15	1.25	6 37	2 48	7,78	43,42	1C,25	20.99	2 123,41	55.01	393,39	8 154 279,34	4.25	0,45	1 166 31	292,63	1 489 82	3 603 28	720,66	4 323,94
150,00	7,66	5 75	3,41		7,09	0,54	8.73	54,29	12,86	23,58	2 852,34	91,22	500,63	10 211 448,36	4.49	0.45	1 310,16	365 53	1 565.88	4 477.43	995,49	5 372,92
165,00	7,94	5,96	3,49	1,38	7,34	0.56	9 05	58,25	13,80	24,44	2 843 84	101,36	539,93	10 957 019 60	4,57	0 45	1 357 84	391,92	1 725,45	4 795,25	959 05	5 754,30
220,00	85	6 63	3 75	1.50	B 13	0 62	10 08	71,94	17.08	27.23	3 507.57	139.26	675.95	13 543 085.90	4.81	0.45	1 512 52	483,39	1 917,53	5 910 46	1 182 C9	7 092 55

Arti Seção11 wo1

H Pilar 5 0 IT (tensão no solo) 4 0

UJU187

QUADRO A2 2 2 - ESTIMATIVA DE CUSTOS DE PONTE CANAL PARA ALTURA DE PILAR = 10 m

PONTE CANAL (h = 0,75)

	K = Decliv = Sec		lar	Freeboard Total	Altura do Canal	Espessura das Vigas	Largura Externa do Canal	Peso da Água	Volume do Concreto do Canal	Volume do Concreto do Pliar	Peso Total	Volume da Sapata	Volume do Concreto Total	Momento	d (minima)	b (minima) (Vigas)	(Escoramento) R\$/(m3)	Volume de Escavação	Formu	Sub-Total	Obras e Serviços Complementaras	Custo Total
Q (m3/s)	m = (F (m)	0,000 h(m)	V(m/s)	(m)	(m)	(m)	(m)	(ton)	(m3)/m	(m3)	(ton)	R\$/(m3) -3,00	R\$/(m3) 218 98	(kg x m)	(,	(vigas)	3 40	R\$/(m3) 4,76	R\$/(m2) 11 27	RS	RS	RS
10,00	2 78	2.08	1.73	1 96	3,14	0,19	3,16	8,72	1,91	17,08	447,55	5,58	79,98	1 594 043,54	2.95	0,38	949.12	61,68	757.78	985,25	197.05	182.30
15,00	3,23	2,42	.92	1,06	3,48	0,23	3,68	11,25	2,51	19,89	575,66	8 35	103,57	2 070 884 11	3,*1	0,40	104,98	79,33	861,33	1 216 52	243 30	1 459,82
50 00	3 6C	2.70	2 06	1 06	3 78	2 25	4 10	13,53	3 05	22,16	890,38	11 15	124,95	2 500 264 8C	3 24	0,41	1 230,86	95,14	944 96	1 420 52	284 10	704 52
25,00	3,91	2,93	2,18	1,06	3,99	<u>C 27</u>	4.46	15,63	3,56	24,09	798.23	13,99	144,89	2 898 023,51	3,35	0.42	1 338,29	109,73	1016,34	1 607,09	321,42	1 928.51
30,00	4,19	3,14	2,28	,06	4 20	0,29	4,78	17,61	4,04	25,79	895,61	16.84	163,79	3 272 558 40	3,44	0,42	432,99	123,43	1 079 26	1 781,27	358,25	2 137 52
45,00	4,88	3,66	2,52	1.10	4,78	0,34	5,58	23,21	5,38	30.03	1 175.10	25,73	217,22	4 331 338 69	3.67	0.43	1 668,31	¹ 81. 94	1 240,40	2 263,71	452,74	2 716.45
50 00	5 07	3.81	2.59		4 92	0,36	5,79	24,95	5,80	31,24	1 261,52	28,74	233,98	4 659 706,37	3,73	C,43	1 735 54	173 85	1 285,27	2 4 2 49	452.50	2 894 98
55,00	5.26	3.94	2,65	1.12	5,08	0.37	6.00	26.64	6.21	32.38	1 345,58	31,77	250,37	4 979 499,88	3,79	0.44	1 798,69	185,44	1 329,43	2 557 02	511,40	3 068 42
75,00	5,91	4,43	2,86	1,17	5,60	0,41	6.74	33,09	7,76	36,37	1 665,67	44,17	313,35	6 200 572.67	3,99	0,44	2 020,55	229,55	482,82	3 105,29	621.06	3 725 35
100,00	6,58	4,94	3,08	1.23	6,17	0,48	7,50	40.58	9.56	40.51	2 035,71	60,14	387,49	7 616 804 97	4,19	0.45	2 250,72	280,55	1 642,95	3 739,21	747,84	4 457,06
110,00	6 82	5 12	3.15	25	6 37	0 48	7,78	43 42	10 25	41 99	2 175 90	66,62	415 99	8 154 279,34	4,25	0,45	2 332 62	299,87	1 699,76	3 980,29	796,06	4 778 34
150,00	7,66	5 75	34'	1.34	7,09	0,54	5,73	54,29	12,86	47,17	2 7 1,30	93.25	525,24	10 211 448,36	4,49	0.45	2,620,33	373,65	1 901,71	4 902,54	980,51	5 8\$3 C5
165.00	7,94	5,96	3.49	1,38	7.34	C,56	9 05	58,25	13,80	48,88	2 904,94	103,54	566,55	10 957 019,60	4.57	2,45	2 715,67	400,34	969,86	5 236,38	1 047,28	6 283,55
220.00	8 85	6,53	3,75	7,50	E, 13	0 82	10.08	71,94	17.08	54,45	3 575,64	141.97	708,88	13 543 065 90	4.81	0,45	3 025 03	492 77	2 189.79	5 403 83	1 280 77	7 584 59

Arc Seção11b war

H Pilar T (tensão no solo) 10 00 4 00

QUADRO A2 2 3 - ESTIMATIVA DE CUSTOS DE PONTE CANAL PARA ALTURA DE PILAR = 20 m

PONTE CANAL (h = 0,75)

		005 ic Retangula		Freeboard Total	Altura do Canai	Espessura das Vigas	Largura Externa do Canal	Peso da Água	Volume do Concreto do Canal	Volume do Concreto do Pilar	Peso Total	Volume da Sapata	Volume do Concreto Total	Momento	d (minima) (m)	b (minima) (Vigas)	(Escoramento) R\$/(m3)	Volume de Escavação	Forma	Sub-Total	Obras e Serviços Complementares	Custo Total
(m3/s)	m = 0, F(m)		V(m/s)	(m)	(m)	(m)	(m)	(ton)	(m3)/m	(m3)	(ton)	R\$/(m3) -3 00	R\$/(m3) 218 98	{kg × m}			3 40	R\$/(m3) 4 76	R\$/(m2) 11 27	R\$	RS	R\$
10,00	2,78	2,08	.73	1,06	3,14	0 19	3,16	8 72	1,91	34,17	490,26	6 11	97 59	1 594 043,54	2,95	0,38	1 898.24	67.56	928,62	1 286 46	257,29	1 543 7€
15,00	3.23	2,42	. 92	i 3 6	3 48	0 23	3,68	11,25	2.51	39,78	825,39	9.07	124 18	2 070 884,11	3,11	0.40	2 209 97	85 19	1 060 23	1 567 93	313 59	1 881,51
20,00	3.60	2,70	2 06	1,06	3 76	0 25	4,10	13,53	3.05	44 31	745,76	12.05	148 00	2 500 254 80	3 24	0 41	2 461 71	102 78	1 186,52	1 812,62	362 52	2 175 14
25,00	3,91	2,93	2.18	1,06	3,99	0,27	4,46	15,63	3,58	48,18	856,45	15.04	170,04	2 898 023,51	3,35	0,42	2 676 57	118 33	257,23	2 034,03	406.81	2 440 83
30.00	4,19	3,14	2.28	1,06	4,20	0 29	4,78	17,81	4.04	51,59	960,09	18.06	190,79	3.272 556 40	3,44	0,42	2 865 97	132,31	1 337,19	2 235,99	447.80	2 688,79
45.00	4,88	3.66	2.52	1,10	4,76	0,34	5,56	23,21	5.38	€0,06	1 250,17	27,37	248,89	4 331 338 69	3,67	0,43	3 336 61	172,29	1 540,69	2 798,27	559.65	3 357.92
50,00	5,07	3,81	2 59	1,11	4.92	0,36	5,79	24,95	5,80	62,48	1 339,62	30.52	267,00	4 659 706,37	3,73	0,43	3 471 08	184,62	1 598,87	2 969,08	593 82	3 552 90
55 00	5 26	3 94	2.65	1,12	5 06	0 37	6 00	26,64	5.21	64 75	1 428,52	33,68	284,65	4 979 499 88	3 79	044	3 597 39	196 59	1 653 19	3 134 35	626 87	3 761 22
75.00	5 91	4.43	2 86	. 17	5 60	0.41	5,74	33 09	7.76	72 74	1 758 60	46.58	352 13	6 200 572 67	3 99	0 44	4 041 °C	242 08	1 846 52	3 755 74	751 15	4 506 89
100.00	6.56	4.94	3 08	1,23	6 17	0,46	7,50	40,58	9.56	81,03	2 136 99	63,13	431,00	7 616 804,97	4,19	0,45	4 501,44	294,50	2 048,08	4 455,96	693,19	5 359,15
110.00	6 82	5,12	3 15	25	5.37	C,48	7,78	43,42	10,25	83,97	2 280 88	69,83	461,19	8 154 279,34	4,25	0,45	4 665,23	314,33	2 119 63	4 734 29	946.86	5 681.15
150 00	7,56	5.75	3.41	1,34	7 09	0,54	8,73	54,29	12,86	94,33	2 829 21	97,30	577,46	10 211 448,38	4 49	0.45	5 240 65	389,9C	2 373 37	5 752,75	1 150,55	6 903.30
165.00	7 94	5.96	3,49	1,38	7.34	0,56	9,05	58,25	13,80	97,76	3 027,15	107,90	619,79	10 957 019,60	4,57	0 45	\$ 431,35	417,18	2 458 68	6 118 52	1 223.72	7 342.35
220 00	8 85	6 53	3 75	1 50	8 13	0.62	10 08	71 94	17,08	108 90	3 711 76	147 37	768 74	13 543 065 90	4.81	0 45	8 050 08	511 53	2 734 29	7 390 55	1 478.11	8 863 66

Ara Seção11º wb1

H Pilar 20 0 T (tensão no solo) 4 0

QUADRO A2 24 - ESTIMATIVA DE CUSTOS DE PONTE CANAL PARA ALTURA DE PILAR = 30 m

PONTE CANAL (h = 0,75)

		0 005 åc Retang:	ular	Freeboard Total	Altura do Canal	Espessura das Vigas	Largura Externa do Canaí	Peso da Água	Volume do Concreto do Canal	Volume do Concreto do Pilar	Peso Total	Volume da Sapata	Volume do Concreto Total	Momento	d (minima) (m)	b (minima) (Vigas)	(Escoramento) R\$/(m3)	Volume de Escavação	Forma	Sub Total	Obras e Serviços Complementares	Custo Total
(m3/s)	m = (F(m)	h(m)	V(m/s)	(m)	(m)	(m)	(m)	(ton)	(m3)/m	(m3)	(ton)	R\$/(m3) -3,00	R\$/(m3) 218,98	(kg x m)			3 40	RS/(m3) 4 76	R\$/(m2) 11 27	R\$	RS	R\$
10,00	2 78	2,08	1,73	1.08	3,14	0,19	3,16	8,72	1.91	51.25	532.97	6,64	115,21	1 594 043,54	2,95	2,38	2 847,36	73,45	1 099,47	1 587,68	317.54	1 905,21
15,00	3 23	2,42	1 92	1,06	3.48	0,23	3,68	11,25	_ 2,51	59,67	675,11	9,79	144,79	2 070 884 11	3 11	0,40	3 314,95	93,04	1 259,13	1 919,34	383,87	2 303 21
20 00	3 60	2 70	2 06	. 06	3 76	0.25	4,10	13.53	3,05	68.47	801,15	12,94	171,05	2 500 264,80	3 24	0.4*	3 692,57	110 41	1 388 07	2 204,72	440 94	2 545 66
25,00	3,91	2.93	2,18	1,06	3,99	0,27	4,46	15,63	3,56	72,27	916,67	16 10	195 18	2 898 023,51	3,35	0,42	4 014,86	126,33	1 498 12	2 460,96	492,19	2 953 15
30,0C	4,19	3,14	2.28	1,06	4,20	C,29	4,78	17,611	4,04	77,38	1 024,58	19,27	217,80	3 272 556 40	3,44	0,42	4 295 96	141.20	1 595,13	2 696.7*	539,34	3 236 06
45,00	4 88	3,66	2.52	1 10	4,76	0.34	5.56	23,21	5,38	90,09	1 325,24	29,02	280,56	4 331 338 69	3,67	0,43	5 004 92	182,64	1 840 99	3_332,82	666,56	3 999 39
50,00	5,07	3 81	2,59	1 11	4 92	0 38	5 79	24,95	5,80	93,72	1 417,72	32,29	300 01	4 659 706 37	3 73	043	5 206,62	195,38	1 911,06	3 525 68	705,14	4 230,82
55,00	5.26	3,94	2,65	1 12	5.06	0 37	6.00	26,64	6.21	97,13	1 507,46	3 <u>5.</u> 59	318,94	4 979 499 88	3,79	0,44	5 <u>39</u> 5,08	207 75	1 976,96	3 711,69	742.34	4 454 02
75,00	5,91	4,43	2,98	1,17	5,60	3,41	6 74	33,09	7.76	109,11	1 847,52	49,00	390.91	6 200 572 67	3.99	0.44	6 261 64	254,6*	2 210,22	4 406,19	881,24	5 257 43
100,00	5,58	4,94	3.08	1.23	6,17	0.48	7,50	40,58	9,56	121,54	2 238 27	66.12	474,50	7 616 804 97	4,19	0,45	5 752,16	308,46	2 453 20	5 192,71	1 038,54	6 231 25
110.00	6 62	5,12	3 15	1 25	6,37	0.48	7.78	43,42	10 25	125,96	2 385,83	73,04	506 39	8 154 279,34	4,25	0.45	6 997.85	328 80	2 539,50	5 488 29	1 097 66	6 585 95
150,00	7,66	5 75	3,41	1 34	7,09	0,54	8,73	54.29	12,88	141.50	2 947 13	101 38	628,68	10 211 448,36	4,49	0.45	7 860,98	408,15	2 845,03	6 602.96	- 320,59	7 923,55
165.0C	7,94	5,96	3,49	. 38	7,34	0,56	9,05	58,25	13,80	146,65	3 149,35	112,25	673,02	10 957 019,60	4.57	0,45	8 147,02	434 02	2 947.50	7 000,87	1 400 17	8 401,05
220 00	8 95	5.63	3 75	1 50	8,13	0 62	10 08	71.94	17,08	163,35	3 847,89	152,77	828,59	13 543 065 90	4,81	0.45	9 275 09	530 29	3 275,80	8 3 ⁷ 7 25	1 675 46	10,052,74

Ard Secac "1 wo

30 00 4 00 H Pilar <u>I (tensão no solo)</u>

1,00100

QUADRO A2 2 5 - ESTIMATIVA DE CUSTOS DOS SIFÕES (EM CONCRETO) - Pressão 12 m c a

Seção Totalmente Enterrada (cobertura 3.0 m)

Declividade = 0,50 m/km

Q (m³/s)	n (m)	Sobrelargura (m)	e (cm)	c (m)	Hv (m)	Escavação R\$/m² 1 46	Reaterro R\$/m² 3,30	V concreto magro R\$/m³ 76,57	V concreto estrutural R\$/m² 218,98	S forma R\$/m² 11,27	Escoramento R\$/m³ 3,40	Juntas R\$/m 11,15	Obras e Serviços Complementares R\$/ m I	TOTAL R\$/ m l
10 00	2 81	10	25 0	3 C	6 31	53 41	42 46	0 22	3 58	14 55	7 90	13 24	*35 73	1 493 02
15 00	3 28	10	30 0	3.0	6 88	64 12	49 07	0 24	4 89	17 00	10 76	15 52	174 70	1 921 68
20 00	3 65	1 5	32 0	3.0	7 29	79 72	61 31	C 26	5 73	18 89	13 32	17 16	204 40	2 248 44
25 DC	3 97	15	35 0	30	7 67	88 24	66 43	J 28	6 75	20 55	15 76	18 68	234 15	2 575 66
30 00 (4 25	20	400	3 D	8 05	105 25	7975	0 30	8 19	22 05	18 06	20 20	276 93	3 046 27
45 00	4 95	20	50 0	30	8 95	129 10	93 70	0.35	11 77	25 75	24 50	23 80	374 13	4 115 45
50 00	5 14	2.5	50 0	30	9,14	143 59	105 89	0 36	12 18	26 70	26 42	24 56	391 79	4 309 66
55 00	5 33	2.5	50 0	3.0	9 33	149 23	109 16	0 37	12,58	27 65	28 41	25 32	405 24	4 457 59
75 00	5 99	2.5	55 0	30	10 09	172 89	122 62	0 40	15 41	31 05	35 88	28 36	485 14	5 336 55
100 00	6 67	30	60 0	3.0	10 87	209 85	147 91	0 44	18 58	34 55	44 49	31 48	578 81	6 366 95
110 00	6 91	3 0	60 0	30	<u>1</u> 111	218 48	152 71	0 46	19 19	35 75	47 75	32 44	598 59	6 584 54
150 OC	7 77	30	65 0	30	12 07	254 74	172 47	0 50	23 18	40 15	60 37	36 28	711 82	7 829 97
165 DC	8 05	30	70.0	3.0	12 45	269 85	180 55	0 52	25 84	41 65	64 80	37 80	779 95	8 579 40
220 00	8 97 :	3 0	80 C J	3.0	13 57	316 93	205 20	0.58	32 75	46 45	80 46	42 28	962 50	10 587 48

Seção Semi Enterrada (cobertura 3.0 m)

Q (m³/s)	h (m)	Sobrelargura (m)	e (cm)	Hv (m)	c (m)	Escavação R\$/m² 1,46	Reaterro R\$/m² 3,30	V concreto magro R\$/m³ 76,57	V concreto estrutural R\$/m² 218 98	S forma R\$/m² 11 27	Escoramento R\$/m³ 3 40	Juntas R\$/m 11,15	Obras e Serviços Complementares R\$/ m t	TOTAL R\$/ m
10 00	2 81	+ C	25 0	20	(0.81)	11 62	11 62	0 19	D 45	14 05	7 90	11 24	48 00	527 97
15 00	3 28	10	30 0	20	(1 88)	13 76	13 76	0 24	4 89	17 00	10 76	15 52	155 69	1 712 63
20 00	3 65	15	320	2 C	(2 29)	16 58	16 58	0 26	5 73	18 89	13 32	17 16	180 42	1 984 66
25 00	3 97	15	35 0	20	(2 67)	17 34	17 34	G 28	6 75	20 55	15 76	18 68	207 60	2 283 57
30 00	4 25	20	40 0	20	(3 05)	20 10	20 10	0.30	8 19	22 05	1806	20 20	244 82	2 692 98
45 00	4 95	20	500	20	(3 95)	21 90	21 90	0 35	11 77	25 75	24 50	23 80	334 79	3 682 64
5G 00	5 14	25	50 Ö	20	(4 14)	24 28	24 28	C 36	12 18	26 70	26 42	24 56	347 44	3 821 81
55 ÖG	5 33	2.5	50 0	20	(4 33)	24 66	24 66	0 37	12 58	27 65	28 41	25 32	359 16	3 950 77
75,00	5 99	25	55 0	20	(5 09)	26 18	26 18	0 40	15 41	31 05	35 88	28 36	431 89	4 750 84
100 00	6 67	30	ьŪ Ö	20	(5 87)	29 74	29 74	0 44	18 58	34 55	44 49	31 48	513 52	5 648 75
110 00	6 91	30	60 0	20	(6 11)	30 22	30 22	0,46	19 19	35 75	47 75	32 44	530 69	5 837 57
150 00	7 77	30	65 0	20	(7 07)	32 14	32 14	0 50	23 18	40 15	60 37	36 28	633 01	6 963 07
165 00	8 05	30	700	20	(7 45)	32 90	32 90	0 52	25 84	41 65	64 80	37 80	696 62	7 662 87
220 00	8 97	30	80 0	20	(8 57)	35 14	35 14	0 58	32 75	46 45	80 46	42 28	865 24	9 517 60

Are Sales she

000191

QUADRO A2 2 6 - ESTIMATIVA DE CUSTOS DOS SIFÕES (EM CONCRETO) - Pressão 20 m c a

Declividade = 0,50 m/km

Seção Totalmente Enterrada (cobertura 3.0 m)

Q (m*/n)	h (m)	Sobrelargura (m)	• (rm)	c (m)	Hv (m)	Escavação R\$/m* 1,46	Reaterro R\$/m* 3,30	V concreto magro R\$/m* 76,57	V concreto estrutural R\$/m* 218,98	S forma R\$/m² 11,27	Escoramento R\$/m* 3,40	Juntas R\$/m 11,15	Obras e Serviços Complementares R\$/ m 1	TOTAL R\$/ m I
10 00	251	10	30 C	30	641	55 22	43 59	0 22	4 27	14 65	7 90	13 64	151 97	1 671 69
15 00	3 28	10	450	30	7 18	70 15	52 68	0 26	7 35	17 30	10 76	16 72	232 39	2 556 24
20 00	3 65	15	50 0	30	7 65	87 78	66 16	0 28	9 00	19 25	13 32	18 60	280 86	3 089 44
25 00	3 97	15	55 G	30	g 07	97 69	71 98	0.30	10 70	20 95	15 76	20 28	326 23	3 588 54
30 00	4 25	20	60.0	30	8 45	115 55	\$5.85	0 32	12 45	22 45	18 06	21 80	375 98	4 135 75
45 00	4 95	20	65 0	3.0	9 25	137 59	98 53	0.36	15 47	26 05	24 50	25 00	459 78	5 057 57
50 00	5 14	2.5	700	30	9 54	155 60	112 83	0 38	17 30	27 10	25 42	26,16	510 45	5 614 97
55 00	5 33	2.5	700	30	9 73	161 47	116 18	0 39	17 86	28 05	28 41	26 92	527 29	5 800 16
75 00	5 99	2.5	75.0	30	10 49	186 04	129 94	0 42	21 30	31 45	35 88	29 96	620 74	6 B28 13
100 00	6 67	3 C	80 0	30	11 27	224 33	155 94	0 46	25 09	34 95	44 49	33 08	728 51	8 C13 58
110 00	691	30	80 0	30	11 51	233 25	160 83	0 48	25 89	36 15	47 75	34 04	752 57	8 278 22
150 00	777	30	85 0	30	12 47	270 66	180 98	0 52	30 65	40 55	60 37	37 88	682 90	9 711 90
165 00	8 05	30	900	30	12 85	286 23	189 21	0.54	33 61	42 05	64 80	39 40	957 80	10 535 83
220 00	5 97	30	90 C	30	13 77	325 73	209 74	0 59	37 05	46 65	80 46	43 08	1 060 52	11 665 7C

Seção Semi Enterrada (cobertura 3,0 m)

Q (m²/s)	h (m)	Sobrelargura (m)	e (cm)	Hv (m)	c (m)	Escavação R\$/m³ 1,46	Reaterro R\$/m³ 3,30	V concreto magro R\$/m³ 76,57	V concreto estrutural R\$/m² 218.98	S forma R\$/m² 11,27	Escoramento R\$/m² 3,40	Juntas R\$/m 11,15	Obras e Serviços Complementares R\$/ m I	TOTAL R\$/m/
10 00	2 B1	10	30 0	2 0	(1 41)	12 82	12 82	0 22	4 27	14 65	7 90	13 64	135 63	1 491 89
15 00	3 28	10	45 0	20	(2 18)	14 36	14 36	0 26	7,35	17 30	10 76	16 72	211 60	2 327 55
20 0C	3 65	15	50.0	2 G	(2 65)	17 30	17 30	0 28	9 00	19 25	13 32	18 6û	254 44	2 798 88
25 00	3 97	15	55 C	20	(3 07)	18 14	18 14	0.30	10 70	20 95	15 76	20 28	296,85	3 265 34
30 00	4 25	20	60.0	20	(3 45)	20 90	20 90	0 32	12 45	22 45	18 06	21 80	340 72	3 747 97
45 OC	4 95	20	650	20	(4 25)	22 50	22 50	0.36	15 47	26 05	24 50	25 00	417 88	4 596,73
50 00	5 14	2.5	79.0	20	(4 54)	25 08	25 08	0.38	17 30	27 10	26 42	26 16	462 44	5 086 85
55 00	5 33	25	70.0	20	(4 73)	25 46	25 46	0.39	17 86	28 05	28 41	26 92	477 49	5 252 42
75 00	5 99	2.5	750	20	(5 49)	26,98	26 98	0 42	21 30	31 45	35 88	29 96	563 54	6 198 94
100 00	6 67	30	80 0	20	(6 27)	30 54	30 54	0 46	25 09	34 95	44 49	33 08	658 83	7 247 16
110 00	6 91	30	80 0	20	(6 51)	31 02	31 02	0.48	25 89	36 15	47 75	34 04	680,20	7 482 23
150 00	7 77	30	85.0	20	(7 47)	32 94	32 94	0.52	30 65	40,55	60 37	37 88	799 34	8 792 73
165 00	8 05	30	90.0	20	(7 85)	33 70	33 70	0.54	33 61	42 05	64 80	39 40	869 61	9 565 76
220 00	8 97	30	90.0	20	(8 77)	35 54	35 54	0.59	37 05	46 65	80 46	43 08	960 67	10 567 32

Arc S-fee ris

ANEXO 2.1: ESTIMATIVA DE CUSTOS DAS SECÇÕES TIPO DE CANAIS E CURVAS DE CUSTOS

900193

QUADRO A2 1 1 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STAR PARA VAZÃO Q = 25 m³/s

ATERRO																		Escay 1 a 2"	Escav de 3 cm.	Aterro	Revest	Juntar	Limpeza	Expurgo	Yeç Prot Ta	Obras Comp.	⊤sta¹
																		RS · P···	(₹\$∵т	Rtm	RS Im	R\$ · m	R3 · m²	Rs ~~	RŞ·r→	R\$	Ps (
Arquiva	r	Seçac	1	I	Θ.	— , — ,		Vates	freeboard1	freetooard2	Prints Esq	Pieta Or	Alfare dos	Revest.	Talude	Firm	4 (44)	182	7 96	273	11475	147	p *2	1 56	157		: !
			_					1977'61	(PTV)	(m)	trri j	\$ri)	Alerros (m)	jemi	Ext.	Chimizado	⊃hmikado			1	L	:	1	l			
\$20 3001 X1	· 5C	5"AF	<u> </u>	0,0001	1 500	2,1055613	71,43	25.0C	0.45	1,36	2.0Cj	e xi	100	.0 00	2.00	207	3.4	2',83	3 73	5.94	. 50	3 48	67.48	\$ 5C	44"	5 %	337.74
Sta 10005 x h	SC	S*A÷		0.0001	1,500	2,1956813	71.43	25,00	C 45	.98	2.00	5,00	5,30	10 00	5,90	297	3.4	5.97	0,00	12.24	1 80	9.48	83 46	8,70	22,36	.241	558,25
Shalop1C xa	150	STAR		0,0001	1,506	2,1065613	71.43	25 00	3,45	106	2 00	600	10.00	10,00	2,00	2,57	3,41	1 697	0.00	413,85	. 80	8,46	103,46	.5.2	44 72	26.32	. 444 SC
Stu lop 15 x 4	150	S"AF		9,8091	1.640	2.1048813	71,43	25.00	0.45	DE	4,00	6 00	15 00	10,00	\$ 00	2,0*	34	6 g T	3,00	855,46	,ec	5,48	25,48	17 . 2	E7 38	53	2 700,87
Star op 20 x b	150	S*AP		6.0001	1 849	2 19655 13	71,43	25,00	0.45	26	4,00	6.00	25 30	10 70	žα	2.0	3 4	897	0,00	376.67	1.50	8.48	4548	2· ·c	99 44	81.22	4 193 36
Sta 1 ppC1 xta	200_	STAP		9,0001	2,000	2,472136	71,43	25 00	C 45	- 06	2,01	5,00	7.00	10,00	5,00	1_52	3,2	24,02	2,43	18.64	179	9 48	70 61	8,12	4,47	7 63	358,90
\$6x10x005.xx	200	STAF		6 0001	2.000	2A 7136	71.45	25.00	3.45	- 06	2.90	600	5,0x	10,00	2,00	1,52	3,21	1 6 32	2,00	154,49	76	3,49	68 ¢.	32	22,36	1473	715.43
Sta10010.x2	290	5"AF		5,0001	2,000	2.472136	71,42	25.00	0,45	S€	2.00	9.00	10.00	0.00	200	.52	2,31	82	200	441,53	1.79	3,46	136 €1	12.52	44 77	37.34	1 542 49
Str op 5 z 1	20C	3-A-		9,8901	2,000	2,472134	71,43	25,00	0.45	26	4,00)	6.00	15.30	.000	5 00		32	5.92	0.00	898.9"	9 1	9.46	25,51	, 7	<i>€</i> 7.30	55.50	2 854,98
S'n 'ap 20 x's	230	\$*£\$	-:	9 0001	1 300	2.472134	71,43	25.00	3 45	36	4 90	500	20.90	10 00	5 00	1,52	j 32	933	C (0C	1 436 01	76	Ş.49	148 *1	2.2	89 44	85 54	4 383 0€

CORTE																	Escav 1 e 2ª RS - m²	Escavite 3 cat R\$ 'm	Atems R\$ / m²	Ravest. P\$ m²	Juntas RS 'm	Jimpeza R\$	Expurgo R\$ i m²	Reg Prot "al R\$ - m*	Obres Compl RS	Total
Arquivo		Secio		+	₹	-к-	Vazão i	Partical		FISE ENQ	Pluta Dér	Altura dos	Revest.	falude	F(m)	p ftat	192	* 36	273	114 16	14"	2 10	1 65	1=7		! {
					L		(87779)	(177)		<u> </u>	<u> </u>	Cortes pro	1cmb	E.1	Domizado	Ownse					1		Ł			LI
\$m op€ xm	5C	S*A=	5,0001		2,1966513	71 43	25.00	0.45	.05	2,00				1,00	201	3.4	63 "1		5 9C	. 50	9.45	55,49	2,00	2.53	3,8	342.51
Sta 1 pp0S x 12	150	5"AP	9.0001	1 800	2,1065613	71,43	25 JC	3 45	106	2,00	6 00	500	15,50	1 00	2,07	34	63,"\	99.54	0,00		5.45	T3,48	0.00	1414	23.43	1 94 95
Sta 1 op 10 sh	150	5"AF	0,9001	1,500	2,1068513	71,43	25,30 (0,45	1 26	200	6.00	10,00	10,00	- 20	2.07	3,4*	108,71	266 96	5.90	1,50	8.48	53 48		n 26	1,31	
Sta 1 pg ' 5 x ta	150	STAR	5,0051	1,500	1,1045611	71.43	25.00	0.45	36	4,00	6,00	5,00	10,00	1,00	20*	3,41	158,71	\$29.3°	0.00	1.60	P 48	95.48	2 30	42.43	95,39	
Sta 10020 x 2	-50	5"A7	9,0007	1,800	2 1065613	71 43	25 OC	2.45	95	4 20	8.00	20.00	10.00	.00	2.7	3.47	183 71	545,°8	0.00	1 50	5 45	105 46	0.00	56.5*	'4' X:	
Sta 1 op 01 xm	200_	5 AF	9,0001	2,000	2,472134	71,43	25.00	- 45	1.06	2,00	8,00	100	12,00	1 90	1,52	321	52	98"	5,00	· 79	9,49	65.51	6,00	2.83	7,4"	380 93
Star op05.x%	200	STAR	0,0001	2,000	2,472134	71,43	25.00	0.45	106	200		5,00	10,00	. 50	1,52	3.21	91 52	111 30	2,00		9.49	76,61		14 14	75,36	329 88
Sta 'oc 'an	20C	STA?	8,6061	1,004	2.477136 j	71.41	25,00	0.46	.38	2,30	6,30	-0,00	10,00	00	1 52	1,21	116,52	294,34	900	1,79	\$ 49	96 61	0.00	28.28	58.5C	2 861 42
Sta 1 op 15 xm	200	5"A?	0.0001	2,000	2,472138	21,43	25.00	S 45	06	4,00			1280	1,00	1 52	3.21	186.52	5*2.30	930	1.79		98.0	230	42.43	123 g'	
Sta 1 op 20 x a	200 J	S-AP	0,0001	2,000	2 472134	71,43	25.00	0.45	1,06	400	600	20 50	.000	1 00	1 52	32	191,52	205 42	2,90		249	28.61	000	56.57	'57 3'	8 272 89
Sta 1 op 01 z ia	150 j	STAF	5,0001	1,500	2,1986513	71,43	25,50	0,45	1 06	230	8.00	1,50	• 2 3€	.50	2,07	3 41	96,2*	(5.39)	3,00	*,ac	545	56.48	0.00	3.6	6.51	337 12
Sta 1 nnO5 xts	150	STAR	9,9091	1,500	2,1046513	21.43	25.00	0.45	36	2,00	5,00	5,00	10 00	• 50	227	3,41	96 2*	39,54	0.00	1,50	e 48	75.46		16.23	24.0C	
Sta 1:00 ' 0 x ta	'50	S*AR	0.000	4 600	2 1066613	71,43	25.0C	€ 45	1,06	2,00	6,00	10.00	10 00	1,5C	2,37	3 41	33.71	291.96	7.00	1.50	146	93.46	200	36,98	56 49	
Statopt5 ca	-50	3"AP	2,0001	1 50k	2,1088813	71,43	الاقت	25	106	430(6.00	15 00	10.00	1 5C	2,92	34"	'98,2'	934 37	-30	, ec	345	*C 48		54 36	'38,3€	5 56' A'
Stateo22.ata	150	STAF	0,0001	1,500	2,1668513	71.43	25.00	0.45	108	400	8.00	2° 00	12,00	1 50	2 (7)	34	233 7*	396 78	9.00	· 60	8.40	25.48	600	72.,	173,37	334212
Stanopt za	200	STAR	9,9001	2,000	2,472134	71.43	25,00	0.45	108	2,00	5 30	1,00	10 00	1.50	1 52	3.2	4 92		0.00	1.79	246	13 98		3.51	121	
Stall apC5.x4	200	STAR	9,9901	1,004	2.472138	71,43	25.00	0,45	.06	2.00	6,00	5.00	10 00	1,50	152	3.21	104 02	111.36	336	179	1 3 40	81 €1	1	5.03	28.65	
Sta 1 00 1 0 x 4	200	STAR	0.0001	2,000	ZA72138	71,43	25 DC	3,45	.06	2.00	6.01	10,00	10 00	1.50	.52	32	141,52	319 34	2.00	1.79	·	96 B*	300	36.08	61,82	
Stafoo15 xts	200	STAR	9 0001	1 500	2A72136	71,43	25.0C	3,45 j	1,96	4.30	5 Or	15 00	12.30	150	52	3,21	204,02	947.38	7,00	279		**3.5*	5,00	54 DB	16.67	
Sta lop20 zta	320	STAP	g 00e1	2 000	2,472138	71,43	25.00	0 45	106	400	£ 2°	20.00	1200	- 5C	- 52	3 21		* OSE 42	200	* 73	S 49	128 61	630	77.4	'83 48	35.35

QUADRO A2 1 2 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STAR PARA VAZÃO Q = 50 m³/s

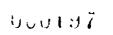
ATERRO										_							Escav 1 e 2 R\$ 'er'	Escav de 3 cat R\$ m'	Alerro R\$ · m·l	Revest R\$ 'm'	Amtes R3 m	Limpeza R\$:m²	Expurge R\$ · m*	Reg Prot Ta-	Ctres Compl	Toral R\$
Arquiro		Seção		T T	T "	· *	Vacale	freeboard1	freeboard2	Pista Eeu	Pista De	Altura dos Alerros Imi	Revest.	Talude Est.	F (n) Otimo ado	r (m) Omrizado	192	7 84	2 "3	114 75	* 47	# 10	1 55	16*		
						└	(mr/s)	<u>um</u>			(tri)			EJC.											$\overline{}$	
Star op01 xia	50	<u> 57,49</u>	0,0001	1,500	2 1048513	71,43	50 ac	2,48]				,α	-000	2,00	2,5	8 442	31 34	11 64	15.54 142.34	2.04	12,79	71,28	5,26	4,47	936	476.5*
Sta 1 ap 05 x ts	*5C	STAR	0,9001	1,500	2.1055513	71.43	50 00 i	0,48	111	2,00	600	5,00	10,00	2,00	2,6	6 <u>4.42</u>	9 64	000	*42 34	2.04	15,79	8" 26	9,46	22.36	.4.06	716 96
Sta 1op10.xks	150	5TAR	0,0001	1,500	2,1088513	71.43	5000	0,48	1,11, 1	2,00	6,00	1,00	10 00	2 00	2,6	8 4,42	9 08	0,00	432,16	2.04	10.79	107 28	3,46	44 72	30.51	555 95
Statop15.cm	• 50	5TAR	0,9601	1,500	2,1066613	71,43	50,00	G 48	1 11	4.00	8,00	15,00	13,00	2.00	2,6	8 4,42	968	0,00	892 96	2.54	1979	129.28	66	£7 06	56,33	2 872,75
Sta1op2C x a	150	5*AR	9 0001	1 500	2 1065813	71.43	50,00	0.48	1	400	5 00	20 00	10 00	200	2,6	8 4.42	8 58	2.00	433 40	2 34	1079	149,25	21 86	89 44	86 48	4 4 0 38
ScalopC1 xm	200	STAR	0,000 1	2 000	2,472136	71,43	50,3C	9,46	1,11	200	6,00	_ 100	10,30	2,00	19	7. 417	35, 8	9,47	16,54	2,27	12,06	75,97	7,01	147	\$.8C	500,03
\$26*ap05.xis	20C	S"AP	6,0001		2,472136	71.41	50 ac	3,48		2.00	6,00	5,00	10.00	2,00	19	4 17	8,38	0.00	155,54	2,2"		91,51	10 21	22,36	15 38	784 47
Sta 1 op 10 x ta	20C	STAR	0,0001	2,000	2,472130	71.43	50.00	2,48		2,00	6 00	0.00	-000	2,00		4.17	86-	000	465,21	. 227	12,98	1157	14,21	4 72	32.93	1 6 9.21
Sta1op15.xts	200	STAR	0,0091	2.000	2,472134	7145	5000	2,48	1	4,00	6,00	5,00	0.00	2 00		7 4.7	861	0.00	944 98	227	2,36	*33.67	18 51	87,08	59 "8	3 042 ***
Sta 1 op 2C × 's	200	STAF	0,0001	2,000	2,4~2136	*1.43	5G 90	£ 48	1.11	4 00	5 00	SC 20	1300	2 00	. 9	7 4.3	861	0.00	1 504 34	2 27	12,06	153 07	22 5*	69 44	90 9E	4 539 14

CORTE																	Escav 1 e 21 R5 'm'	Entary tie 3 cat.	Alerra 85 'm'	Revest RS · m'	Juretes Rå i m	::mpeza R\$ · m¹	Ezpurgo 95 m²	Reg.Prot.Tal स\$ पर	Obras Comol	Total Dt
Arquivo	i	Section		-	- 4	K	Vezão	treeboard1	heeboard2	Dista Esq :	Plata Der	Altura dos	Revest.	Talude	F (m)	h (m)	192	• н	273	114 75	1,4"	0 10	1 55	* 0*		
						:	(aYm)	(m)	(m)	m	(rn)	Cortes (m)	(cm)	Ext.	Otmoado	Omelzedo			l				L		i	
Sta 1op0".x s	150	S AR	0,0091	1.500	2,1065513	71.43	50.00	3,48	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2,00	600	1,00	1000	.8	2,58	442	73.21	17.86	2.00	2.04	0.00	59,25	0.00	2 83	3.85	563 35
3ta 10pC5 x s	150	STAR	9,0001		2,1056517	71,43	90.00	0.48	1,11	2 OC i	6,00	5.00	-0.00		2,68	4.42	93 21	131 03	: 00		-C, 19	77,29	0.00	1414	29 89	1 524 26
Sta 1 op 10 x is	150	STAR	0,0001	1,500	2,1055513	71.43	50,00	0.48 j	1.11	2,00	5,00	10,00	10,00	1,00	2,68	4,42	*8.21	31145	3,00		2,79	8 29	5.00	28 28	ét. Gr	3 103 ~~
Sta 'op' 5 xta	150	STAR	0,0001		2,1066613	71,43	50,00	0,46	111;	400	8,00	15,00		1,00	2,68	4,42		596,5"	0,00	2.04	10 1	99,28	0,00	42,43		5 502,*5
Sta 1 ap 20 x is	¹50 j	STAR	4 900 -	1 500	2 1066613	71,43	56 ac	C 45	1 11	4 00	6 00	20 OC	15,00	100	2 66	4 42	193,24	935 29			19 29	109 28	2 oc	56 57	162 74	5,299 54
Sta 10p01 xks	200	5"AR	6,0001	2,000	2,472 136	71,43	50,00	3,48		200	6 00	.00				4 17	82,88				12.05	73 07	9,00	2,83	11 78	900,70
Sta 10005.xx	200	_S*AR	B,8401	2,000	2.472136	71,43	50.00	0,48		2.00	6 00	5,00	10,00	1,00	1,9~	4 17	102,82	46.02	0.50	2,27	1206	81,07	9,00	14,14	33 23	594,58
Sta1op15.xm	200	S"AR	0,9901	2,000	2,472138	71,43	50 00	0.48	. 111	2,00	600	,3,00	-0.00	1,00	37	4.17	127 68	351 38	200	2,27	1206	3, 0,	0.00	28 28	67 21	3 42" 46
Sta 1 op 1 5 x te	200	S"AR	0,0001	2,960	2,472138	71.43	50,00	0.46	1 11	4,30	6,00	15,00	.000		',97	4,17	·768	851 75			12.06	103,07	0.00	42 43	117.77	5 980 ⁷ 6
Sa op20 xis	200	STAR	0 0001	2,000	2,472138	71.43	5° 00	C 48	1.11	400	6 OC	25,50	1200	• 00	1,57	4.7	202.68	1 007 11	5 00	2.27	12,06	**2.07	0.00	56 57	• **5 *3	8 931 45
Sar op01 xis	50	STAR	0,0001	1,501	2 1066613	71.43	50,00	0,48		2,00	6,00	1,00	10,00	.50	2,68	4.42	75,7+	15,99	0.00	204	10, 3	70 28	9,00	361	2,55	542,96
Star op05 x s	150	STAR	9,0001	1,600	2,1066613	71.43	50,00	5,48		2.00	8,00 6,00	5,00	10,00	50	2,68	4.42	105.7*	31,03	0,00	2.04	10,79	62,29	900	18.03	30 46	1 553 49
Sta1op1C.xe	150	5"AR	4,6001	1 600	2,1065613	71,43	50,00	0,48	1,11	200	6.00	0.00	10,00	.50	2,68	442	143,2	342,45	600	2.04	10,79	9 26	5.90	36.06	65,97	3.364,71
Staton'5 xis	150	S AR	9,9901	1,500	2 10555*3	71,43	50,00	0.48	1,11.3	4.00	6 00		10,00	1,50	2 60	4 42	205,71	873,67	0 00	2.54	10 75	114 28	0,00	54.08	121,56	5 199 39
Sta 1 op 20 x is	50	S_VS	8,0001	1.600	2.1056513	71,43	50 00	0.46	1 11	4.00;	600	20,00	.000	1 50	2 58	4.43	243 21	. 265 29	000	2,34	10.75	129.26	2 30	. 77	.69 3,	9.634 ≪
Sta op01 xis	200	STAR	0,0001	2,600	2,472136	71.43	50 00	0.48	4,41	2,00	6,00	1,00	10,00	1,50	,97	4,17	55 18	15 73			1206	*4.07	5,00	3,51	1 5	590,31
SER CADO NE	200	STAR	9,000	2,000	2,47214	71.41	ഹവ	0.48		2.00	5 00	5,00	10,00	5	1,97	4.7	11518	_145 02	5.00	2.27	12.06	96.07	0,00	9,03	33,60	23 59
Sta 'op1C_r &	200	STAR	4,0001	2 000	2,472138	71.43	50.00	9,48		200	6,30	19 00	10,00	1,50	1,97	4.7	152,68	3.75.36		227	2,05	3 ,27	0,00	35.0*	.5'32	90 888 י
Sta 1 op 1 5 x ts	2700	S*AR	£,600 1	2,000	2,472*38	71,43	50,00	€,48	1,11	4,00	6,00	5.00	15,00	1,50	1.97	4 17	215,19	726,75	6 00	2.27	12,96	116,27	0.00	54,08	136.93	e e*** 39
Sta 1 op 2C x as	20C	S-AR	0,0001	2 000	2,472136	71.43	50 OC	C 48		430;	600	20 00	10 30	1 50	97	4 17	252,58	* * 57 * 4	0 00	2 27	12,08	-33 57	000	72.11	201 30	10 266 25

QUADRO A2 1 3 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STAR PARA VAZÃO Q = 85 m³/s

ATERRO)																		Escay 1 = 2* R\$:m3	Escav de 3 cat. R\$:m3	Aterro R\$ 'm3	Revest R\$/m3	Juntas R\$ / m	LIMPeza R\$ 1 m2	Expurgo R\$ 'm3	Reg ProLTai R3 : m2	Obras Compl RS	"ota" RS
Armetvo		Seção		Т	70	×	,		Vazile	freeboard1	reeboard?	Plata Esc	Pista Olr	Allum dos	Revest	Tatude	F (m)	h (m)	1.92	7,96	2 73	*14 75	1.4*	D 10	155	* 0~	ĺ	
í						_		i	(m3/s)		(m)	(114)	<u>(m)</u>	Aterros (m)	(471)	Ext	CHIMIZAGO	Ottomazado	ł	1		i	ii					
Sta topO1 xis	.20	5TA₽		200	1,50	2.1	11	71,43	85,00	: 53		2,00	5,00	.00	10,00	200	3,2	5,40	40,72	24.6	15.94	2.46	13,36	75.04	7,31	4,47	12 **	65:25
Sta 1 op 05 z la	5ū	STAF		00.0	1,80	2,1	1	71,43	a6,00	6,53	- 9	2,00	6,00	5,00	10.00	2.00	3,27	5,4C	15.84		12,34	2,46	13,06	9.04	.0,2	22,36	15.40	*35 26
Sta 1 op 1 C.xis	50	STAR		1,00	1,80		1	71,43	95,00	053)		2,00	6,00	, 2,20	1000	2,00	3,27	5,40	03	0.00	445,5	246	13.96	115,34	14 2	44,72	32 40	1 652,35
Sta 10015 = 16	-50	STAF	-:	1,00	1,64	2,1	1	*1,43	95 00	0.53		4.00	6.00	15,00	•0.00	2,00	3,27	5,40	0.37	2,00	925,4C	2.46	13,06	133,54	18 €1	er oe	59,24	3 021 45
Sta 1 00 20 X 4	150	STAR		8	1 60	7.	1.	7143	95 00	0.53		4,00	600	20 00	10 00	2 00	32	5 40	.0,31	0.00	1 464 58	2 46	13 06	.53 04	22.61	89 44	9C 42	4 611 32
Salop 1xs	20C	S"AP		1,00	2,00	2,4	7	71,43	85 00 j	0 53	1 15	2,00	600	1 00	10,00	2,00	240	5,08	46,24	2*_30	16 64	2,35	14.55	79.50	7	4.4"	13,32	57901
Sta *opO5.xm	20C	S-AP		.00	2,00	2.4	•	71.41	85,0C	3 53	1 19	200	6,00	5.00	10,00	2.00	2 40	5,98	13,55	3 30	155 84	2,75	4.58	95 5C	'1 10	22.36	16.76	955 9e
Sta top 10.xia	200	S AR		00	2.00	2,4	7	71.42	85,00	2,53	1 19	2.00	5,00	1000	10,00	200	2.40	5,08	10,28	330	463,80	2.75	14 50	115 5C	15,10	44,72	35 21	735 5ê
Sta 10p15.xls	200	S-Y2	-	1.00	2.90	2,4	7	71,43	85,00	0,53	1 19	4,30	5,00	15.00	10,00	200	2 40	5,38	10 28	0.00		2,75	14,58	137 50			63.2	3 226,74
Sta 1 ep 2C «ta	200	5-A-		.00	2 00	2,4	7:	*1,43	85 OG	2 53		4 00	5 30	20.00	10.00	200	2 40	5 08	10 2e	900	567 15	2.75	14 58	157 50	23,50	96 44	96 56	4 818 55

CORTE																		Escay 1 a 2º R\$ / m3	Escav de 1 cal. R\$ mJ	Aterro R\$ 1m3	Revest. R\$ 'm3	Aprilas Rā ' m	Limpeza R\$ 'm2	Espurgo R\$ · m3	Reg Prot."al R\$ 1 m2	Obras Compi RS	Tota RS
Агциячо		Seção		m.	¥			Vazão ;	freeboard1	freeboard2	Pista Esq	Pista Dir	Altura dos	Revest.	Takude	Fini	h (m)	1.92	*#	2"	114,*5	1.47	010 (1 68	187		ĺ
<u> </u>								(m3/s)	įm)	<u> mi</u>	imi	im	Cortes (m)	(cm)	EXL.	Othersteen	Otimizado		<u> </u>								
Sta 1 op O' < ts	.15C	S-V2	0,00	1 50	2	1":	71.44	65,00	2.53			500	100		100	32	5,4C	82,59	38,58			306	73.04	000		-5.56	733.5
Sta 10005 FTS	15C	5^A=	0.00	1.60	3.	11	71,42	85,00	0,53	1 19	2,9C j	5,00	5 00	15,00	1 00	3.2	5,4C			0.00	2,46	3,06	£1.54	0.00	14 14	36 99	1 886 35
Stafoo' C x s	-50	STAR	0.00	1.50	2.	11	1.41	85,30 [0,53		2,00	e.oc	10.00	ja,30	.00	5.2	5,40	27.56	171 61	0.00	- 46	73 06	91 04	0,00	28 29	*0 94	3 6*7.55
Statop 5 x e	50	STAG	0.00	1.50	2,	11	71,43	85 00	C,53	<u>.</u>	4,00	6,30	15,00	10,00		3,27	5 40	59	57.05	5.00	2.46	13,06	103,04	7.3C	42.43	20 9	6 169 52
Sta ' ap 20 x m	- 50	. STAF	0.00	1 50	1	11.	*1,43	85 00	653	.0	4 30	630	20 00	10 00		3 27	5 40	202 50	· 22* 28	2.96	240	13 36	11304	: oc	56 57	*5 9C	9"18"5
Sta 1 op 01 xta	200	S"AP	0.00	2,30	2,	47	*1,43	55.00	0.53	19	2 00	630	1 00	.0 00	∵,00	2,40	5.08	93,74	39.29	2,00	2.75	14,58	77,50	9.00 9.00	2,83	.5,5	95" 33
Sta 1 op 05 x la	200	5"AF	0,00	2,16	2	47	71,43	95 OC;	0.53	1,19	2 00	600	5 00	·900c	1 00	240	5,06	113,74	.85.23	9,00	2 75	14 58	95,50	0.00	પ્યુપ્ત	41,08	2 394 51
Sta 1op 1 C.xta	200	GA*2	0.00	2,00	2,	47	71,43	95 OC	0.53	1 19			10 00	10.00	1 00	2 40	5,08	138,74	4.2.74	5,00	2.75	14 58	96,50	0.00	25 28	70,5	4 00" 24
Sta 1 op 1 5 x is	20C	S-AP	0,80	2 00	. 2	4".	1,41	95.00	0.53	1 19	4,00	600	15 00	10,00	1 00	2 40	5,28	188,74	735,22	0,00	2,75	1456	95,50 07,50	C 00	42,43	-32,18	¢ *40.05
Sta 1002C z4s	200	S*AS	0 00	2 00	2	47	71,43	95 OC	3 53	1 19	4.00	600	20 00	10,00	1 00	2 40	5 08	213 74	1 112,69	0 00	2 75	'4 58	17.50	0.00	56 57	190 53	9 e™: 28
Starop01 x s	·50	STAR	0.00	1,60	1	141	71,41	65.0C	2.53	19	2.00	5,0C	.00	10,00	1,50	3,27	5,40	95,09	36,56	9 00	2.45	3.05	74 04	Çoc	361		753 * 7
Sta 'op05.xm	50	\$TAP	4.50	1.60	2.	11	71/42	e5,00	5,53		2,90	9,00	5.00	10,00	1,50	3,27	5.40	**5.09	1667.	200	2,46	13,06	86 04	0.00	-9 03	3* 5€	1 915,58
Sta 'op' 0 x s	150	STAG	0.00	1.60	2.	11	*143	95,00	0,53	119	2,00	9,00	10,00	15,00	1,50	3,2"	5 40	152 59	396,91	3 00	2,4€	13,06	101 04	200	36.06	76,0€	3 6"9 ' 4
Star op 15 xm	• 50	STAR	0,00	1.60	- 2.	11	1.41	85,DC	0,53		4,00	6,3C	15,00	10,00	1,50	3,2"	5.40	2*5 09	*4**06	\$ 00	2.46	13,06	118 04	3 30	54.08	134,63	6 666 15
Sta 10p20 xta	50	STAF	0.00	1,50	2.	11	*1A3 j	e5 oc	€ 53		4 3C	8.00	20.00	10 30	* 50	3.27	5 40	252 59	26	200	2.46	13.06	133 04	9 50	7211	254 57	10 453 55
Sta 1 opO1 xts	200	STAR	8,00	2.00	2.	47	71,43	85,00	0,53	1.19	2,00	6.00	1.00	1000	1,50	2,40	5.06	95.24	37.29	5.50	275	14,58	79.50	9 30	361	16.6.	846,34
Sta 1 op 05 x is	200	5"AP	0,00	2,90	2,	47	71,43	85,00		1,19		6 30	5.00	0.00	1 50		5,08	128,24	195,27	2,30	2 5	14 58	78,50 90,50	0 00		41 65	2 124, 4
	200	S*AR	8 00	2,00	2.	47 .	71,43	85 00	0.53	1 19		-30	030		50	240	5,00	161,74		0.00		14 58	OE 50	0 00	36.08	83 70	4 258 58
5:a'op'5.xs	20C	S- A ₽	0.00	2 00		47	71,43	95 OC :	353	1 19		6.00	15 00		1 50	2.40	5.08	228 24	810,23	0.00	2.35	14.58	22,50	0 00	54.08	145 82	7.436.70
Stateg20 xm	20C	S"A=	0.00	2 00	2.	4*	7143	95 OC	2.53	19	4 00	6 OC	20.00	10.50	1 50	2 4C i	5 DB	263 "4	1 262 89	0.00	2 75	4 58	137 50	Coo		219 71	** 205 06
S'a'sc∠0 xm	200	<u> </u>	0.00	2 00		4"	/144	55 OC	1,53		400	500	20.00	1000	1 50	2 40	5 06	263 4	1 202 69	030		4 58	137.501		2**	297	



QUADRO A2 1 4 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STAR PARA VAZÃO Q = 150 m³/s

ATERRO																		Escav 1 e 2º 4\$ rm3	Escay de 3 cal. R\$/mJ	Alemo R\$/m\$	Revest R\$ 'mJ	Juntas R\$ 'm	Limpeza R\$ - mZ	Espurgo Rt · m3	Reg Prot.Tal	Oteras Comp. RS	Total R\$
Arquivo		Seção	· · · · ·		Т	٧	۲.	(avino (avino	freepoard1 (ਸਾ)	freepoard2 (en)	Pista Esq (m)	Pusta Dir (m)	Altura dos Aterios (mi	Revest.	Tanıde Ext.	F (m) ObsumtC	h (m) Obmizado	· #2	796	2.3	154.78	5.4°	\$ °C	68	1 4*	_	
Star opG1 xta	·50	STAR	0,0	1	1,50	2,11	71,43	150.00	0.63	34	2,00	5,00	1,0	1000	2.00	4,05	6,68	53.36	46 16	5,94	3.04		80 11	5 02	4.47	9.51	945
\$24.0000 xm	-50	STAF	0,0	· .	1,50	2,11	71,43	150,00	0,63	1,34	2,00	8,00	5,0	19.00	2,00	4 05	6 58	23 39	8 93	142,34	3 64	10.	96 11	11,27	22,36	. 6,5€	3-46 68
Statop10 xxx	:50	STAF	9,0	7	1,54	2,11	71,43	50,00	0.53	1 34	2.00	8,00	10,0	19,00	2,00	4.05	5 66	12,67	0.00	450,90	3.04	15.11	116 11	15,22	44.72	34,58	752 06
Sta 1 op 15 x le	15C	STAP	4,0	Π.	1,50	2,11	71.43	150,00	2,53	1 34	4,30	6,00	150	15,50	2,30	4,05	8,68	12.5	8	961,92	3.04	16,11	.38,	9.62	67,08	62,74	3 201 71
Statop20.xls	150	S"AP	• •	┖	1,60	211	71,43	150 OC	0,63	1 34	4,3C	6.00	20 0	10 00	2,30	4 05	6 55	12.67	600	1 546 45	304	16 11	-58,11	23 62	89 44	95.34	4 862 19
Sta1opC1 vis	29c	S"A"	-0.0	- I	2,00	2,47	*1.43	150 00	0,63	- 34	2,00	5,00	.0	10 00	2,00	2,97	6.29	61,23	45,0E	10.64	3,39	17.98	85,49	9.10		19.30	964,23
	200	STAP	0,0	-	2,00	2,47	71,43	150,00	0,63	34	2,00	5.00	5,0	10.00	2,00	2,9~	6 29	21,22	7 12	155,84	3,39	- 76	101 49	12 30	22,36	19.53	1 011 46
	250	STAP	0,0	ī	2,00	2,47	71,43	150,00	0.63		2 06	8,00	10,0	10.00	200	2.9"	6 29	12,55	0.00	50^,25	3,36	17.98	121 49	16 36	44,72	37.97	. 93. 33
	200 j	STAR	0.0		2,04	2,4"	71,43	- 50,00	0.63	1 34	400		15,0	10,00	2.00	2,97	5 29	12.55	_ 000	1 233,12	3.39	_ 798	143 49	20.73	57 08	67.57	3 445 95
Sta (op 20 x/s	200	5 AF	- 60	7	2 00	24.	71,43	150 JC	0.63	134	4 OC	€ 00	20 0	12 00	200	29"	5,29	1255	0.00	1 944 58	3 39	-7.98	163 49	24 70	E9 44	/3:60	5 '5' 30

CORTE																	Escav 1 e 2* R\$ 'm3	Escav de 3 cat. R\$ (m3	Aterro R3 · m3	Revest. Ri mi	Juntas Rš m	Limpeza R1 · m2	Expurga Ri · m3	Reg Prot Ter RS 1712	Obras Compl RS	"otal R\$
Arquivo		Seção		-	м	K	Vazão jm2-s) ;	freeboard*	freehoard2 (m)	Pratu Esq	Pişis Dir Amı	Altura dos Cortes imi	Revest.	Talude Ext.	F (m)	h (m) Otomizado	1 92	7.96	2"3	114.78	.4.	\$ 10	166	10"		
S'a ' op' ' • *		S*AS	9.00	1,60	2,11	71.43		2,53		200	ē oc			- 00	4.05	5.66	95.2"	73 83	5.∞	3 54	.5	78 11	coc	2 23	23 0€	117727
Sta 10006 xm	15C	S"A?	0,00	1,60				2,53	1 34	2,00			₹.3C	.00	405	5 52	115.2	772 ^6	: 20	3 04	.6	86 11				2 434 54
Sta top 10 vis	15C	S-AP	0,00	1,60	2,11	71.43	150 00	0,63	1 34	2,00	6.9C	10 00	10,00	ЭC	4,05	6,68	140,27	452 79	0.00	3 54	16	9611			95 72	
Statep15 x ta	*50	S*An	0,00	1.50	2.11	71,43	15C.00	0 63	1,34	4,00	6,00	15,00	10,00	1,30	4,05	8,55	190,21	278,33	0.00	3 04	16 11	108.11				7 25 44
5th '0020 x is	·50 j	STAP	0 00	1,50	2 11	71,43	150.00	0.63	1 34	4 00	5 30	20 00	10,00	1 00	4 05	9 68	2.5 2	1.58 67	000	304	16 11	**9**	sx	56.57	20.66	5 254 52
StatopC' xe	29C	STAF	0.00	2,60	2,47	71,43	150,00	0,63	34	2.00	€,30	1,00	10.00	100	2,9"	6 29	108,73	75,27	0,00	3,39	17,98	53,4 5	0.00	283	24,8€	1 257 **
S24 * op05.xts	20C	STAR	0,00	2,00	2,47	71,43		5,83	1 34	2 00	6,50		.0'0.	- 00	2 97	6.29	126,73	246 22	0.00	3,3G	17.26	31,49	0.00	14.14	52,94	2,700 05
Sta top10 x is	7.C	S-AP		2,04	2,47	71,43			1,34	2,00	6.00	10,00		1,00	29"	6,29			3,00	3,36	98,	101 49	0.00	20 26	96.21	4 655 53
Sta 1 a p 15 x la	20C	STAP	0,00	2,06	2,4"	71,43		0.63			600			1.00	25	5.29	203,73		5,00	3.36	- 96	*13.49		42,43		
Sta 1 op 20 x ts	200	STAP	0 00	2,00	2.47	71.43	150 00	0 63	* 34	4 00	6 00	20 00		. 00	29"	6 29			c oc	3 39	7.98	123 49			219 72	11.205 75
StatooC* x a	'50	STAP	9 00	1,50	2.11	71.43	150.00	C 63	34	2,00	6,00	.,00	10 00	1,50	4,35	6,58	97,**			304	16.13	7911	500	3,51	22,98	166,5
Sta footS re	:50	STAF	0.00	1,60	2.1*			0.63		2,00	8,00	5,00		1,50	4.06	8,50	127 =		000	3 24	18,11	9171				2.463.**
Statop13 xis	15C	STAR	0.60	1,50	2,11	71,43		0,53		2,00	5,30			1,5C	4 05	0.60	195,27	477,79		3 04	1611	106 **	0,00		90 95	4 633 . 8
Sta 1 op 15 x is	15C	5"AP	0.00	1,80	2,11	71,43		C,53	1 34	4 0C	9,30	· 5,00		1 50	4.05	6.68	227,77			3,04	1611	123,11	5,50	54,38	153 45	7 526,07
Sta 1 00 20 x 16	*50 j	STAD	9 00		2 11			0.63			6 00			1.50	4.05	6 68		<u>1</u> 308 87	. 000	304	16 11	13811	2003	72,**		
Star and xm	200	STAP	0.00	2,00		71,43		0.63		2,50	6 00			50	2,8*	5.29	111,23			3,36	17,38	84,49	6,00	3.6*	24,65	1 257 32
Sta 1.000E x to	29C	STAR	9.00	2,80	2.47			0,63	1,34					,50	2,57	5,29	141 23				7,96	96,49	9.00		50,52	2729.29
Sta 1 op 10 x ls	29C	STAF	0,00	2.00	2.47	71.43	150 00	2,63	134	2.00	6,00			1,5C	2,97	6,29			0.00	3 39	17,98		000		100,34	511.7
Statop*5.xm	200	STAP	8,00	2,00	2,47	71,43	150.00	2,53	1,34		5,00			1,50	2,9?	6,29	241,23	931,15		3,39	17.98	125.49		54 08		8 525 *3
Station2C xis	200 j	STAP	0.00	2 00	2 47	71.43	5C 0C	\$ 53	1,34	4 00	E 00	20 00	19,50	1 50	29"	6 29	278 73	1 413 51	0.00	3 39	17 96	143 49	6.00	72.11	245 86	2540 56

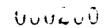
QUADRO A2 1 5 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STAR PARA VAZÃO Q = 165 m³/s

ATERRO																		Escay 1 e 2º Rt · m3	Escav de 3 cut R\$ m3	Aterro R\$: m3	Revest R\$ m3	Aurtas RS 'm	Lempeza Rá muz	Expurgo R\$ (m)	Reg Prot al	Obras Compi R\$	Totar RS
OVIMBIA	_	Secto	-		T T	м		Vazie	"seboard"	Ireeboard2	Pieta Esq	Pista Ov	Affura dos	Reyest.	Talude	Fimi	h Imi	92	- ×	2 73	114 75	147	0 10	* 86		ı l	- 1
			1		1	i		(m3/s)	lmi	iu/	(m)	(m)	Aterros (m)	(cm)	Eat.	Otomizado	Otimitado	<u> </u>		<u>]</u>					1	i	i
Sta lopC1 xis	-50	S"AR		0 00	.50	2,11	71,4	15500	0.65	1 36	2,36	6,00	٥	10,00	2.00	4 19	6.92	55,89	53,89	15,94	3,15	1675	8 C	2.22	4,41	9,63	375
Şiş top05 xis	. 50	5-4R		9.00	1,50	2,11	71,4	95.00	0,65			6 00	5,0	10,00	2,00	4 19	5 92	25,59	10 57	42.34	3_15	5.70	37.0	11 42	22.3€	19.2"	979.77
Startop10 xis	150	STAR		0,00	1,60	2,11	71,4	1 185.00	0.65	1,38	200	6,00	-c,o	10,00	2,00	4 19	6,92	13(0,00	458,15	3 15	15,70	117.C	15.42	44.72	34 91	1 790 46
Sta 1 op 15, xls	150	STAG		9,80	1,14	2,11	71/	165,3	0.65	38	400	9,00	15,0	10,00	2,00	4.19	5,92	13	0,00	968, C	3 15	15,70	139,10	1982	6*06	63.41	3 233 93
Ste 1 op 20 x to	150	STAR	:	0,00	1 80	2 11	714	165,30	0.65	. 36	4,00	6,00	20.0	10,00	2.00	4 78	5,92	13 11	0.00	1 557 E2	3 15	16,70	159 10	23 62	59 44	95.24	4 905.25
Statopd' x s	20C :	STAR		0,00	2.60	2 47	71.4	165 X	0.65	. 38	2.00	6,00	100	10,00	2,00	3,08	8,52	64 19	50,83	18,64	3 51	18,52	86 68	9,34	44"	20,64	052 45
\$:a10005.xa	20C	S*AR		0 90	2 00	2.47	71.4	165 00	0.65	1,36	2,00	6.00	5.00	1000	2 00	3,26	0,52	24 19	9,13	155 84	3 51	16.52	102,66		22,36	20,42	04 23
Sta i op ' 0 xte	200	S"AR		0,00	2.00	2.47	71.4	*65.00	0,55	1 36	2,00	6 00	10,0	.000	2,00	3,08	6 52	12.99	2,30	503 65	3.5*	18 62	122,68	8,54	44,72	38,33	954.52
Stu 1 op 15 x is	200	S"AR	T	0,00	2,00	2,47	71,6	95 00	0,55	1 38	4.00	6 00	·5.0	.000	200	3.00	6 52	12,99	5,00	041 43	3,51	18.62	4.68	20,54	90,78	68 35	2 485 72
\$ie1oo20 xls	200	S*AR	-	00 9	2 90	2 47	*1.4	95.00	: 85	1 38	4 00	600	20.0	: 1000	2 90	3 06	6 52	12 29	3 00	* 658 81	3 5*	18 62	154 58	2494	89 44	102,70	5 231 64

CORTE																	Escay 1 e 2º R3 · m3	Escav de 3 cat. R\$ / m3	Aterro R\$ (m)	Revest. R\$ i m3	Juntas Rš i m	Limpeza P\$ · m2	Expurgo R\$/m3	Reg Prot Tal RE 'm2	Obras Compt. R\$	Total R\$
Arquevo		Seção	1	г.	- +	κ.	Vazão : (m3/s)	*sepoard1	Teeboard2	Pista Eeq	Pista Dkr	Altura dos Cortes emi	Revest.	alude	F(m) Otimqado	h (m) Orimzado	1.92	7,94	2 73	114.78	1.47	0 10	1.55	1.0*	J	,
A	150	STAR	0.60		2.11	71,43	***		1 38	2,00			19.00	EAL	Orania acc	E.92	97.76	81.74	2.00	3 15	5,70	79.10	0.00	283	24.71	260,00
Stu 1 op 01 x la				1,80				0,65						1,00	- ::					3 15	16,70	87 10		14.4		
\$ta10005.xm	-5û +	3"46	3,80		2.11									1.00		6,92		234.15	000					25,25	50,00 90,77	2 \$4\$,B4
Sta * op1G.zla	·50	S*AR	0 90		2,11	71,43		0,85						1,00		692			0.00	3,15	16,7%	97,10				4 527 50
Statop 5 xm	'50	S"AR	0.00	1.30	2,11	71,43		0.65						1,00		6.92			_ 0.00	3,15	16,70	109,10		42,43	43,54	7 325 64
5tm 10p20.x16	150	STAR	5.00	1,50	2,11	71,43	165,00	0 65	1,38	4,00	600	20,00	10,00	. 00	4 19	9 92	217 76	1 185,72	.000	3,15	1670	**910	0 00	56,57	206 3C	10 521 18
Şta 1op01 xis	20C	STAR	0.00	2,00	2.4"	71,43	165,00	0.65	1,38	200	6,00	1.00	10,50	1,26	3,08	5,52	111,59	84.62	0,00	3,5*	15 62	94,55	0,00	2,63	26,60	356 ℃
Star Logg(5 sta	200	STAR	8,60	2.00	2.4°/	71.43	185,00	0.65	.38	200		5 00	10,00	1,00	3,08	8,52	131,89	259,32	6,00	3,5*	18.82	P2,88	0.00	14 14	55,44	2 827 47
Sta 1 og 1 C x1s	200	STAR	0,00	2,00	2,47	71.43	165.00	0.65	36	200			10,20	1,00	3,38	8,52	156,69	522,70	5,00	351	15,62	102,58	0.00	26 26	98 65	5 03 30
Sta *ap *5 xta	200	STAR	0 00	2,00	2,47	71,43	-95 00	Ç,#S	1,36	400	6,00	15,00	10,00	1,00	3,28	6,52	205 69	861,0"	5,00 6,00	3 51	18,62	114,68	0,00	42 43	157 96	8.055,52
Sta 1op 20 x la	200	S"AR	0,50	2 %	2,47	71,43	^55.00	° 95	1 38	400	5,00	20 00	10.00	1 00	3 28	6 52	231.59	1.294.45	5.00	3 51	18 62	124 68	0.50	58,57	225.05	1' 4'7 34
Sta 1op01 xes	•50	S"AR	4.00	1,50	7,11	71,43	155,001	2,65	1 36			1,00	·000	1,50	4,19	6 92	00,26	79,74	0.00	3,15	16,70	80 10	2,00	3,51	24,50	1,249,61
Sta 1 0 p O 5 , x 16	· 50	STAR	0.00	1,55	2,11	71,43	185 00	0,85	1.38					* 5C	4,19	6,92	*30.26	234,16	000		16,70	92,10	9,00	19,03	50,51	2.579.07
Sta 1op 10 x ta	·5C	S"AR	4 90	1.80	2,11	71,43	185,00	265	1,36					1,50	4.19	6,92	67.16	494,68	0.00	3,15	18,70	107 10	0.00	35,05	93,90	4 785 54
Stu 1op 15 x ta	· 5C	5*AR	1.00	1,50	2 11	71,43	165,00	0.65	1,38	4,00	5,00	*5,00	0.00	1,50	4 19	5,92	23C,26	875,20	_ 0.00	3,15	16,70	124 10	0.00	54.08	157.30	8 C22 26
Sta *oo20.xts	15C	STAR	9,60	<u>1</u> 80	2,11	71,43	165 OC	0.65	. 39	4 90	6,00	20 00	10,00	1 50	4 19	6 92	26" 76	1 335 72	000	3,15	16 70	139,10	0.00	٠٠.٠	232 47	11 955 99
Sta 'ooc' zie	200	STAR	96,90	2,00	2,47	71,43		0.68	*,38		5,00			1,50	3,08			62.62	0,00		18 62	95,68	0.00	3,51	25,40	1 346 3C
Şся төрбő жж	200	57~3	0,500	2 00	2,47	F1,43	165,00	0.65	1.36	200	_ 6 20			1,50	3,08			259 32	3,90	3 5 1	5 62	97,58	0.00	18,23	56,01	2.656 ℃
Sta log 'S xm	200	STAR	0,00		2.47	71,43		38,5	1,38	2,00			10,50	1 50	*1**			547.70	5,00 0,00	3,51	186∠	12,66		36,35	23,79	5 292, "4
Sta 1 op 15 x ta	200	S"AR	0.00	2,94	2,47	71,43		0,55			6,00	15,00	.0 20	1 50	300	6,52		956.0°		3.51	9.62	129 68	0,00	54,08	17-,51	5 52,25
Sta 1 co 20 x is	200	S AR	0.00	2 60	2,47	71,43	`55 00°	05	1 38	4 00	500	20:00	10 00	· 50	3 06	6 52	291 69	444 45	0.00	3.51	18 62	144 62	2,30	7211	25- 22	12 812 14

QUADRO A2 1 6 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STAR PARA VAZÃO Q = 185 m³/s

ATERR	D																		Escav " a 2" RS : m1	Escav de 1 car R\$ m3	Atemp R1 'm3	Revest R3 : m3	Juntas Rā i m	Limpeza Rii m2	Espurgo På må	Reg Prot Tel	Obras Comp.	Tota-
oviup1A		Seção	Ī_	·]			K	Vaz (m3	6a 1	respond' -	Petrour 112 (m)	Prote Enq	Pista De (mj	Altero dos		*alude Ext.	Culuriado Culuriado	h (P)) Orimitago	112	• н	2 73	114 76	1.4"	a 10	1 64	107		_
Sta 1 op 0 1 x is	'5C	5"AR		0,00	1,60	2.11	. 71	.43 1	96 OC	0,57	1.4	2,00	5,0		0 13 00	2,00	4,33	7.1	58, E	55,44	15,94	3,25	.25	62,32	5,4C	4.47	21.06	074.70
Sta 1 op 05 xts	150	5*AR		0.90	1.60	2,11	71	A3 1	50 OC	≎,67	14"	2 00	8,0	5,0	0 13.00	2,00	4 33	7.*!	28,18	12.55	142,34	3,25	17.25	98,32	·· ec	22,36	19,96	1012,34
Sta 1op10,rs	- 50	STAR		0.00	1,80	2,11	. 71	.43 1	90 OC	0,67	1,41	2,00	6,0	10,0	12,20	2,00	433	7,15	13.53	0,00	458,0°	3.25	17,25	118,02		44	36,23	1 796,85
Sta 10015 xts	.50_	STAR		9.00	1,80	2,11	71	.41	90 OC	067	1 41	4,00	8,0	15,0	C 15,50	2,00	4,33	7 15	13.53	000	973,52	3,25	17,25	140 02	20,00	6".06	63.98	3 253,20
3ta10020 x 4	150	STAR		9 10	1 80	2 11	71	.43	90 00	0 67	1 41	4 00	60	20.0	0 10 20	2,00	4 33	T 15	13 53	000	1 567 63	3 25	17 25	160 02	24 OC	89,44	97.07	4 950 33
Sta opt 1 xm	200	ŞTAR		0,00	2,00	2,47	71	49 1	00,00	0.67	.41	2,00	60	13	C 10,00	200	3,19	6.7	66.91	56 41	16 64	3,53	19,24	87.76	9.55	4.4	21 92	1 118,35
Star op05 xta	200	_ STAR		0,00	2 00	Z 47	. *1	49 1	C 20	0.67	• 41	2,00	60			2,00	3,19	574	26 91	9.36	155,84	3,53	19,24	103 78	12.75	22.35	21 01	1 071,53
Sta1op10 xls	20C	5"AR		0 00	2.00	2.47	71	,43 <u> </u>	50,00	0.5		200	6,0	0.0	0 000	200	3,18	6,74	4 3,4C	3,50	505 55	3,63	19 24	23,78	16 "5	44,72	38 ~4	9 5 62
Stu 10p15 xis	°00	STAR	\Box	0.00	2,00	2.A7	71	43 1	96 OC i	0,5"	1,41	4 00	6,0	5.0		2,00	3 18	E.~	3.40	0,00	048,76	3 62	19,24	145,76	21,15	57,36	59 OE	3 521 36
Sta 1 op 2C x 's	20C	STAR		0.00	2.00	2,47	7.	.43 1	50:00	3.57	1 4*	4 90	50	20 (0 10.00	2 00	3 18	e 74	13.40	5.00	• 67* 5*	3 63	19 24	195,76	25 • 5	99 44	Or EC:	5 256 9


CORTE																		Eucav 1° a 2°	Escar de 3º cat.	Aterro	Revest.	Amtas	Limpeza	E≥purgo	Reg Prot, Tal	Obras Compl	Total
																		R\$ ns	P\$ / m3	4\$ / m3	R\$: m3	R3 ·m	%3 ′ m2	R\$ m2	R1 'm2	R\$	R\$
Arquive		Seção	. —	-	T	м :	K	Vazão	freeboard 1	tresposed2 .	Paste Esq	Plata De	Altura dos	Revest	Talude	F (ITV)	h (m)	1.92	7.96	273	114,75	1,47	B 10	1,56	1 07		
<u> </u>	;		↓	L	┺			ml/s	<u> </u>	<u> </u>	<u>trà</u>	[मन	Cortes (m)	(cm)	Ext_	Othelzado	Ottenizada										
Sta 1 op 0 ' x is	150	STAR	0.00	1.50	<u>'</u>	2,11;	71,43				2,00	6.00	1 00	.000	1,00	4,33	* 15	100 06	59 32	0.00	3.25	17.25	80 02	0.00	283	26,25	1 339,39
Stall op DS 4.3	SC /	5*AR	2.90	1,30	4	7,11	71.42			7.4"	200	0,00	5,00	*0.0C	1.00	4,33	7,15	120,08		0.00	3,25	17,25	88,00	000	14.14	52.3	
Sta 1 op 1 0 x ta	15C	STAR	0.00	1,80	ــــــــــــــــــــــــــــــــــــــ	2,11	71,43		0 0,67	1,41	2,00	6,00		10,00		4 33	7,55	145,06	485,52	3 30	3,25		98,92	0.00	28 29		4 6"3 66
Sta op 15 xts	15C	STAR	. 0,00	1,80	<u> </u>	2,11	71/3	190,0	0 67	1,41	4,00	6,00	15,00	12,00		4.33	7,15	185,00	E2C,63	0.00	3,25	17.25	110,02	C,00	42,43	147.24	7,509 08
Sta1op20 xis	.50	STAR	0 90	* 60	<u> </u>	2,11	71.43	1 180 :	06"	- 41	4,00	6 00	20 00	10 00	1,30	4,33	7 15	220 06	1 210 74	3 96	3 25	17.25	120 02	900	56 57	210 63	10 741,88
Stalop0'xis	200	STAR	4,00	2,00	<u> </u>	2.47	71,43	180	C 0.67		2,00	6 00	1 00	10,00	1,00	3,18	6.74	114.41	92.50	9,00	3 63	19,24	85,16	2 20	2,83	28,26	1 441,37
Sta 1 op C5_xts	200	STAR _	0.00	2,00		2.47	71,43	180	c c <u>ar</u> -		2,00	500	5 00 10 00	÷ 000	1,00	3,*8	674	134.41	271 64	2,5	363	19,24	93,76	0,00	4,14	57,79	2,947,45
Sta 1 oc 10 gra	200	STAR	9.00	2,00	1	2,47	71,41	1 180 (0.67	1,41	2,00	6,00	1900	10.00	1 00	3,18	874	159.41	540,46	0,00	3,63	19,24	103,75	000	Z8 28	131.87	5 95,41
50a10015 x1s	20C	S ⁻ AR	0.00	2.00	1	2,47	71,41	. 80 (0,67	1,41	4 00	6,00	15.00	0,00	1 00	3,16	6,74	209,41	904.2"	000	3,63	19,24	11575	0.00	42,43	182,04	8 263,86
529 9p20 xm	200	S-AR	0.00	2,00	1	2,47	71,47	180,0	0 67	1 41	4.00	6,00	20,00	.000	1.00	3 16	8 74	234 4	.323,36	000	3,63	19 24	125 76	0.00	56.5	229 99	رت £27 1°
Sta 1 op 0 1 xis	50	STAR	0.00	1,80	ı —	Z,11	71,43	18C,0	00 06"	1 41	2,30	6,00	1,00	10,00	50	4 33	7,15	102,56	67,32	0.00	1.25	17 25	B* 02	0.00	3 61	26.05	.328,70
Sta 10pO5 xts	-50	STAR	0,00	1,80	T	2,11	71,43	19C,0	0 0 0 0 0	1 41	2,20	6,00	1,00	10,00	·,50	4 33	7,15	132,56	245.4C	0,00	3,25	17,25	B3.02	9.00	18.03	52,71	2.657.97
Sta top10 xia	'50 ;	57 4 9	9,00	1,50	ı –	2,11	71,43	BC (xc. 067	1.41	2,20,	8,00	10,00	10,00	.5C	4.33	7.15	70,06	510,52	0,00	3,25	17.25	100.02	0.00	36.06	56,77	4 935,11
Sta 1 op 1 5 xts	-50	STAR	0,00	1 50		2,11	71.43	180,0	C C 6"		4,00	6.00		10,00	1,50	4,33	7,15	232,56	895,63	6,00	3.25	17.25	125.02	0.00	54.06	186,90	8.205
Sta 1 on 20 gra	15C	STAR	0 00	1,60	1	2,11	71,43	160	C	14	4 00	600	20.00	10.00	1 5C	4.33	7,15	270,00	1 360 74	9,00	3 25	**25	14C.02	COO	72.11	236 BC	-20% 69
Sta op01 xm	20C	S*AR	0,00	2,00		2,47	71,41	180,3	C 3,E*	1,41	200	6,00	1 00	10 OC	1 50	3,19	674	116 91	90.59	0,00	3 63	9,24	66,76	0,00	3.6*	28,06	· 430 98
Sta Topus xis	200	5*~?	0,00	2,40	<u>, </u>	2.47	71,43	180	0.67	1 41	2.00	6 00	5.00	,0'0C	1 50	3,18	6.74	146 91	2"1 64	2,00	3 63	19.24	98,76	0.00	18.03	58 3°	2 275 68
Sta 10p10,xis	200	STAR	0 104	2,60	ı .	2,47	71,43	180 (0,67	1,41	2,00	6,00	10,00	10,00	1,50	3,16	8,74	184,41	300.40	5.30	363	9,24	113,76	0.20			5 456 85
Sta 1 op 1 5 xis	200	STAR	0.00	2,00	1	2,47	71,43	180 0	067	1.41	4.00	6,00		12,00	1,50	3 18	8,74	245,91	979.27	0.00	3.63	19,24	130,75	0.00	54,08	17570	8 96C,49
Sta 1 oo 2C x is	200	STAR	0.00	2 00	1	2 47	71,43	1900	0 057	1 41	4 00	600	20 00	15 30	1 50	318	6 74	294,4*	473 08	000	3 53	19 24	145 78	0.00	72,11	256 *?	*3 064 50

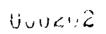
QUADRO A2 1 7 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STANR PARA VAZÃO Q = 25 m³/s

ATERRO	1																Escay 1 e 2"	Escav de 3 cat.	Atemy	Revest.	Juntas	Limpeza	Expurgo	Reg_Prot_Tal	Obras Comps.	Total
																	Rt/m3	Ra ·m3	#\$ · m3	R\$ / mJ	R\$ 'm	R\$¹m2	R\$ · m∆	R\$ · m2	R\$	₹\$
Arquivo		Seção	-	F	*	i K	Vazão	freeboard1 -	freeboard2	Preta Esq	Preta Dir	Altura dos	Revest.	Tanuca	= Im)	h (m)	1 92	7.94	273	114,75	1 47	0 10	1 65	1 07		· I
L			}			<u></u> ,_	(17379)	hrij	1070)	1 project	(m)	Atemos (m)	(cm)	- 4	Ottobusco	Oppreizace	<u> </u>									
\$0x10001.xls	.20	STANR	0,0001	1.500	2,1056513	36,30	25 X	2 45	106	2,3Cj	600	.,∞	10.00	2 00	2,85	471	33 50	••.33	15 94	000	3,00	*2,15	6,43	4.47	4,50	229,25
Sta 10005 x 1	15C	\$*ANR	0 0001	1,500	2.1956513	30,30	25,00	2.45	1.96	2,00	6.00	5,00	10 00	2,00	2,95	4 1	804	9.00	142.34	6 00	3,30	56 °S	£,53	22.36	9,23	460,72
Statep10.xts	150	STANR	1,0001	1,500	2.1056513	20,30	25.7u	2,45	1,06	2,00	6,00	.0,00	10_00	2 00	2,55	4,71	5.92	0,00	49573	0.00	0,00	128,15	13,63	44.72	25,55	308.2
Sta 'op' 5.x's	150	STANR	0,0001	1,500	2,1068513	j 30 30	25,00 :	2,45	1.06	4,00	6,00	15,00	10 00	2 00	2,85	4,**	6,92	2,00	900.87	0.00	0,00	20 15	18,03	57,08	6, 7	2 637 12
Sta1op2C.xts	15C	STANR	9 9001	1 644	2,1066613	30,30	25.00	- 45	1 06	4 00	6.00	20:00	10.00	200	2,65	4 31	6 92	- 50C	1 445 62	0.00	3 30	150.15	22 23	89,44	82,39	4 '56 '9
Sta 'opC' x's	20C	S*ANR	1,0001	2,006	2,472138	30,30	25,00	0.45	1 05	2,00	6,00	1,00	10,00	2 00	2,09	4,43	37,64	9,29	1664	2,00	3,00	*6,06	7 2-	4.4	4,30	219.50
Sta oppos me	20C	S"ANQ	0,0001	2,004	2,472136	36,30	25 00	7,45	1 08	200	6,00	5,00	10.00	2,00	2,09	4,43	8,70	5,00	155 84	5,30	5 00	92,06	10,4"	22,36	9,75	49* 33
Sta 'op' 0.xte	200	STANR	9.0001	2,000	2,472138	30,30	25 00	0.45	1,05	200	6,00	10,00	10,00	2,00	2.09	4,43	5,59	3,00	469,78	2,20	0.00	112,06	14.41	44,72	27.53	1 404 08
Statep*5.xm	200	STANR	0,0001	2,000	2,472136	30.30	25 00	0.45	.08	4,00	6,30	15,00	10.00	2,00	2 06	4,43	6,59	0,00	954.47	2,20	0.00	134,08	_18 e 1	6°,08	54 65	2.78*35
Sim 1op20 xia	20C	STANR	2,0001	2 000	2,472136	30,30	25.00	0.45	- 06	4 00	6 00	20 00	10,00	2 OC	206	443	e 59	5 00	151976	2.00	0.00	154 98	22.6*	BS 44	86 1	4 39* 44

CORTE	E														Escay 1 + 2* Rt / m3	Escav de 3 cat R3 'm3	Aterro R\$: m3	Revest R3 m3	Juntas R\$ / m	Limpeza R\$ / m²	Expurgo R\$ · m3	Reg Prot. "al RS - m1	Obras Compi R\$	Total R\$		
Arquevo	$\neg \tau$	Seção		m	м	т. к	Vazão	Peeboard1	Taeboard2	Preta Esq	Pista Dir	Altura dos	Revest	Talude	F (m)	h (m)	1,82	7.94	2.73	114 78	1,47	8 10	1 55	1 97		
							(article)	(174)	(m) :	(m)	(m)	Cortes (m)	(Cres	Ext.	Oliveizacio	Offirmizego										
Sta 10pC1.xia	15C	STANR	0 9001	1,640	2,1068513	30,30	25,00	0,45	1,08	2,00	6,00	.00	10 00	1,00	2,85	4,*1	75.37	29,09	0.00	000	c,x:	*0 15			6,29	320 93
Sta 1 op 05 x la	150	S"ANR	8 0007	1,544	2,1066613	30.34	25,00	0.45	1 05	2,0C	6,00	5,00	10.00	. 00	2,65	4,71	95.3*	136,88	0.00	0,00	0,00	*8 15		*414	25,98 51,53	. 3.8 83
Sta1op10.xts	150	STANR.	6,0061	1,600	2,1055813	30,38	25.00	9.45	1.06	2,00	6,00	10,00		1,00	285,	4,**	120,37		0.00	3 00	0,20	98 15	9,00			2 934 03
5ta 10g15 x38	150	STANE	6.0001	1,580	2,1066613	39.34	25,0C	0.45	1 06	4.00	6,00			1,00	2,85	4,71	170,37	813,17	0.00	0.00	2,30	190,15	6.00		105,27	5 368 63
Sta 1 op 20 xms	150	5ÎANE	9,8001	1,806	2 1085513	14,34	25,30	0.45	36	4 0C	8 00	30.00	10,00	,oc	2.55	4.71	195 37	953,91	0.00	300	200	**0 15	000	58.5	160.60	6 200 62
Sta 10001 and	200	STANE	9,0001	2,009	2,472130	39.39	25,0G	0.45	1.05	2,00	6,30	1,00	1 C,OC	1,00	2.09	4,43	85,14	19,7	0.00	2,00	0 00	74.06	6,00		6,52	337,45
Sta1op05.x4	200	STANR	8,0091	2.000	2,472136	39,30	25,30	0.45	26	2 00	8,00	5,00	10,00	1,00	2.09	4 43	105,14	151,95	0,00	5,00	0.00	82,96	0.00	14,14	26 69	1 463,39
Ste* op *C.xm	200	STANR	0 0001	2,000	2,472134	30,30	25,30	0 45	05	200	6,00	10,00	10,00	1,00	2,00	443	136,14	362,23	0,00	2.00	0.00	92,05	000	26,25	63 45	3 236,19
Starop15 xte	200	STANR	0,0001	2.000	2,472138	39,30	25,00	0.45	1,06	4 00	6,00	15 00	10,00	1,00	2,09	4 43	180,14	857,52	0.00	5.0C	0.00	104,08	0.00	42,43	114 3C	5 829.4
Startop 20 x in	200	STANR	0 0001	2,000	2,472134	30,30	25 00	C 45	1,05	4 00	8 00	20,00	10 00	1 20	2,09	4 43	205 14	1 027 61	0.00	0 00	0.00	114,06	000	56 5"	172,94	8 820 15
StaSopO1.xin	· 50	\$TANR	9,9001	1,509	2,1066613	30,30	25,00	0,45	1,08	2,00	6.00	1,00	10,00	1 50	2,85	4,71	77,87	18,09	3,00	5,30	0.00	71,15	000	3,61	6.09	310,54
Sta 5op05 xta	SC	STANR	0,9801	1,500	2.1965613	30,30	25,00	0,45	1,08	2,00	6,00	5.0C	10,00	1,50	2,85	471	107 67	136 68	0,00	0,00	0.00	63,15	0.00	18,03	26.45	1 346,15
StaSop10.xls	15C	S-ANG	0,0001	1,800	2,1055513	30,30	25,00	2,45	1,05	2,00	6,00	10,00	10 00	• 50	2,85	4,71	145 37	352.43	0,00	0.00	0,00	98,15	000	36,36	62.68	3 195,48
Sta Scot 15 xia	15C	S"ANR	8 0001	1,500	2,1665613	30,30	25,00	3,45	1,06	4,00	6 00	15.00	10,00	• 50	2,65	4,71	20 87	666,17	2,00	0,00	0,00	115,15	0.00	54 08	118,93	6 065,25
Sta5oo20.xts	15C	S"ANR	1 000 1	1 100	2.1099913	30 30	25 00 1	0.45	1.08	400,	6 00	20,00	10,00	1 50	2.85	4,*1	2453	1 103.91	5,00	0.00	0.00	130 15	0.00	72.11	186 97	9 535 42
Sta 5op01, ma	200	5 ANR	0 0001	2,000	2,472136 ;	38,30	25.00	0,45	1,08	2,00	6 00	1,00	10,00	. 150	2,09	4,43	87 64	17.74	0,00	0,00	0.00	75,08	200	3 6	8.41	327,05
Эшбор05 лъ	20C_	S*ANR	4,0001	2,000	2.472136	30,38	25 00	0,45	1.08	2,00	6.00	5,0C	10 00	.5C	209.	4,43	11764	151,95	0,00 3.00	0.00	0,00	87,08	3,00	18.33	29,27	1 492,52
StaSop*C.xts	200	STANE	ē.8001	2,009	2,472136	30,30	25,00	0.45	1,08	2,00	6,00	10,00	10.00	,5C	209	4,43	155,14	387,23	0.00	0.00	0,00	102,06	2,00	36.06	66 58	3 497 63
Sta Sep 15.xia	200	STANR	8,0001	2,004	2,472136	30,30	25.00	0.45	1.06	4,00	6,00	15,00	10,00	1,50	2.09	4,43	2.7,54	742,52	0.00	0 00	<u>c</u> ,2c	119 06	5,00	54,08	127 98	6,526,10
ъщ5ор∠⊽ яв	ننخ	STava	v.00-	2 004	2,-12 36	34.34	25.00	0.45	06	4,90	5.00	30.00	10.00	1 %*	2 76	443	255,14	· · · · · · · · · · · · · · · · · · ·	0.00	0.00	6.00	134 06	0.00	72.11	199 12	10 154 96

QUADRO A2 1 8 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STANR PARA VAZÃO Q = 50 m³/s

ATERRO	1																		Escav 1 e 2 R\$ · m3	Escav de 3 cat. R\$ m3	Aterro R\$ m3	Revest. R\$ 'm3	Juntas R\$ · m	Umpeza RS i m2	Exputgo R5 · m3	Reg Prot Tai R\$ 'm2	Obras Cornol :	"ota- P§
Arquivo		Seca	· [_		- M	i K		/azilo mi/a;	freeboard1 (m)	*eenoerd2 (PII	Pista Esq (m)	Pista Dri (Pri)	Altura dos Aterros (m)	Revest. (cm)	Talude Ext.	F (m) Otimotado	F (m) Otomogado	197	**	2.73	114 *5	14-	a 10	* \$5	- 0*		i
Sta 1 op C* x la	150	S"AN	2	0 800-	1,500	2.1065613	3	p.3a	50,00	0.48	1,11,1	2,00	6,00	1.0	0.000	2,00	3,70	610	44,46	31,14	.5,24	0.00	5,00	7.34	7.47	4.4	5 09	4*2.*9
Sta 1 op05_xts	150	5 AN	R .	0.0001	1,500	2,106661	3	0,30	50,00	9,48		2.00;	6.00	5,0	e :000	2,5C	3,70	6,10	1946	6,30	142,34	2,00	3,90	93,34	1967	22 36	9.51	485,2€
Staf op 10 are	·50	5 AN	R .	6,9091	1 800	2,166661	3	0 30	50 OC	0,48		2,00		10,0	C 12 00	2,00	3,*0	6.10	886	5,00	451 91	0.00	2,00	13 34	1467	44.2	26,65	359.26
Sta lop 15 xm	:50	STAN	R .	0,6601	1.600	2,106561	3	0,36	50 OC	3,48	_ :::	4 OC	500	*5,0	C 15,00	2,00	3,79	5, 0	8.66	2,00	943,35	0,00	z 200	35,34	90	67.00	54 2	2 "50 4
Sta 1op 20 x to	-50	5 TAN	R	9 9001	1 500	2 106881		9 30	50 OC	0.48	1 11	4 00	600	20,0	c 1000	2 00	3 10	6.3	8 66	500	1 513 73	6 96	9 30	55 34	23 07	89 44	86 92	4 382 33
StatopC1 xls	200	STAN	2	0 9001	1.000	2,47213	3	9.30	50 OG	5.46	1 11	2,00	8,00	10	6 10,00	2 00	2 71	5.74	52,56	27 62	15 54	0 0G	0 00	92 14	0,43	44"	7 86	400 65
Stu 1 op/05,x1s	200	SAN	₹	7,000,D	2,600	2,47213		9.30	50,00	0.48	111	2,30	6,00	50	0 16,00	2,00	2 71	57	15,91	000	55.54	000	0.00	96 1	11,53	22 36	10 15	5' - SC
Sta 1 op 12 x to	200	S AN	٩ .	8.0001	2,000	2,47213	3	6,30	50,30 j	9,48		2,00	6,00	19.0	0,000	2,00	2 ~1	5 "	6,23	0.00	492.53	9.00	0 00	119,14	15,53	44.72	28.59	4 3 45
Sta no 15 x 6	200	S 4N	Ę .	4,9001	2,000	2.4*213	3	0 10 j	50,00	0,48		4.00	6,00	15,0	0.00	2,30	2.71	5 1	5 6,23	000	_ · 007,*3	300	0 00	140 14	20	£7,08	57 57	2 941,41
Sta 1 op 20 xm	200	5 AV	R	5,6001	2 000	2,47213		0 30	50 OC	\$45		4 OC	6,00	20:	300	2.00	2 "1	5 **	8 23	5 00	1 8C2 43	3.56	9.00	16C · A	24.00	35 44	3C TS	4 530 '9


CORTÉ																	Escav 1 s 2º R\$ 'm\$	Escav de 3 cat R\$ m3	Alerro Ris mJ	Revest R\$: m3	Juntas R\$ 'm	Limpeta R\$ 'm2	Espurga R\$ 'm3	Reg Prot "al R\$ m2	Obras Compt. R\$	Total R\$
Arquivo	Ţ.	Seção		3	M	K	Vagle	freeboard1	Teepoer32	Pista Esq	Pinta De	Altura dos		alude	F (rm)	h (m)	1,92	7.94	2"3	114 75	1 47	9 10	4 66	107		
	—∔-						(m3/s)	(m)	- trai	<u>(m)</u>	<u>(m)</u>	Cortes (In)	(cm)	Ext.	Otimizado	Constado										
Sta SOC XIII	<u>50</u>	S-TW-E	8 0001		2 1065513	30 30	50 OC	<u>2.46</u> ↓	1111	2,00	6,00	.00			3 70;	.,610	98,34		000	5.36	3.30	75.34	2 00	2 83	-1,65	59€, 4 6
Shalos05 xia	15C	STANR	B.0001		2,1066813		50 OC	0,48	1111	2,00	8 X	\$,00 10,00	10,00	эс	3.00	6 , re			2,20	^ 30	0.20	53 34	0.90	1414	34.5"	1 752 91
Sta1op*3.xts	*5C ;	STANR	0,0001		2,1056513		50 OC			200	6,00	10,50	.000	1,00	3.70	610		4G4.73	0.00	000	0.00	93,34 [29 28	7034	3 587 59
5ta 1 op 15 x ta	-50	STANR	9 9001	1 685	2 10555 13	30.30	50.00	0.48		40C	500		10,00	1,00		6,10	163,34	716,41	0,00	900	000	135.34	6,00	42,43	122.7	9 232 75
Sta1op25.xm	150	S"ANR	0.0001	1.500	2,1056613	30,30	50.00	0.48	* 11	400	500	20.00		100	3.20	6.0	208 34	1 003 09	350	9.00	000	1'5 34	20:0	56 5°	151 ET	2°5 32
Sta 1op01 xis	200	S"ANR	0,0001	2,000	2,472136	30,30	50,30	0.48	-,11	2,90	5 00			1,00	2,71	5,75	100 36	51,43	3,50	5,00	0.00	8C,14	930	2,83	12.26	625 33
Sta 1 op 05 x la	20C	STANE	8,0001	2,000	2,472136	30 30	50,00	3,48		2.00	6.00	\$ 00	10,0C		271	5,75	20.35	207.99	2,00	\$ _. 30	6,00	88,14	0.00	14 4	36 2°	1 948 82
Sta1op*C.xls	20C :	5*ANR	9,0001	2,000	2,472136	30,10	50,0¢	2,48	111	2,00	0.00	10,00	10,50	00	271	5,75	45,36	448 69	0.00	2,00	2,00	98,14	3,00	28 28	77,8	3 988 55
Stafop15.xm	200	STANR	9,0001	2,960	2,472136	30.10	50.00	0,48		4.50	8,00 8,00	15,90 20,00	.000	8	271	5,75	195,36	184 36	0,00	0,00	5,00	110,14	200	42,43	33.5	3 966,55 5,806,77
Sta 1 op 20 x ts	300	STANR	0 9001	2,000	2,472136	30,30	50.05	0.48		4 00	6.00	20,00	.900	120		5 75	220 35	1 175 10	0.00	0.00	\$30	'20 14	000	56.57	196 96	10 046 38
Sta SopO1 x 4	·50	STANR	0 0001	1,600	2,1065613	30,30	50.00	0.48	1,11	2.001	6,00			1,50	3,7C	610	90 64	45.70	9 20	0.00	0,00	76,34	0,00	3 61	** 47	585,06
Stu5op05 xin	150	S"ANR	0.9901	1 500	2,1058613	16.30	50,00	C.48	11,	2 0G	6,00	5,00	.000	150		5.10	120.64	186,05	0,00	0.00	0.00	96 34	0.00	18 03	35 14	792 4
Sta5op10.xls	15C	STANE	4,0001	1,500	2.1056613	36,36	50,00	C,48	1,11	2.00	5,00			1,50	3,70	5.0	158 34	429,*3	3.00	0.00	0,00	C3.34	00,00	36.06	75.47	_ 3 549 23
Sta5op15.xs	15C .	5 ANR	9,0001	1,500	2,1066513	30,30	50,20	0,48	111	4,00	5,00	15.00	10,00	1,50	3,70	6,13	220 84	791,41	5.00	0.00	0.00	20,34	0,00	54.08	35.5	6 929 39
StaSop20.xs	-50	STANR	0 8001	1 140	2,1066813	30 30	50 OC	0.48	—:	4,30	6,00	20.00	16.00	1,50	370	6 10	258,34	. 533 38	3 00	9.90	0.00	135,34	0.00	*211	208 04	10 510 12
StationC xts	200	STANR	0,0001	2 000	2,472136	30 30	50 Or	0.48	1,11	2.00	6,00	1,00	10.00	1,5C	271	5.75	22,88	49.43	9 00	0,00	3 OC	€'.14	0.00	3,61	12,08	6.4 53
StaSop05 xte	200	S"ANR	9,8001	2 000	2,472136	30.30	50 00	0.48	1,11	2 00 j	£,30	5,00	.000	1,50	27.	5.2	132,65	257.99	2 20	2,20	1,20	93,14	0.00	9 03	38 79	197505
StaSop*G.xla	200	S-ANR	1.0001	2.000		30,30	50 0;	0,48	111	2.00	6.00	1,00 5,00 10,00	-0.00	1,50	2.71	5 "5	170,35	473 69	000	9,90	5.0C	108,14	0 00	36.06	62,94	4 229.99
StaSop*5.x*s	20C	5"469	8,0001	2,000		36.36	50'00	C.45	111	4,00	6 00			1 50	2,71	5,75	232,65	859,39	0.00	0.00	3,30	125 14	0.00	54,08	47.6	7505 40
Sta5op2C.x%	20C i	STANG	0 0001	2 300	2,472136	30,36	50.00	C 48	1 ** .	400	500	18,30 20,00	10.00	1 50	2 1	5 75	270 35	1 325 10	000	0.00	500	14014	300	72	223 5	38 . 8
															<u></u>											

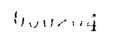
QUADRO A2 1 9 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STANR PARA VAZÃO Q = 85 m³/s

ATERRO																		Escav 1 e 2	Escav de 3 cal	Aterro	Revest	Juntas	Limpeza	Expurgo	Reg Prot.Ter	Obras Compl	Tolas
Arguevo		Sec.le			T N		-	Vazão	~eeboard1	Sanhaurii?	Pieta Feo	Pista Oir	AFUE A GOS	Revest T	Tanan	Fumi	2 0001	R\$ * m3	R\$ 'm3 7.96	R\$ - m3	R\$ m3	RS 'm	R1 · m2	R1 m3	R8 · m2	es es	R\$
Kida-10	i	00410	l		1			(m3/a)	im	im)	(m)	[m]	Alertos (m)	(cm)	Est	Otimizado	Otimutedo	l				-	`		,	L	L
Sta 1 op 01 x as	15C	STANR	9 000 1	1 60	2 106	16 13	30 30	65,00	0,53	1.19	2,00	e,00	1.00	10,00	2,00	4,5	1,45	59 15	58 47	'5,94		300	82,42	9.48	4.4	129	561.65
Sta 1 op 05 x la	150	STANR	0,0001	150	0 2,106	5513	30 30	85,00	0 53	1 19	200	6,00	5.00	10 00	2.00	4,51	7.45	29 * 8	998	142,34	0.00	0,00	98,42	11 68	22.36	1 52	58" 4"
Statop10 xis	15C	5"ANR	0,000	1.50	0 2,106	5613	30.30	65,00 j	0.53	1 19	2,00	e,oo	10,00	10.00	2,00	4,51	'45	10,36	0.00	458,41	0.00	0.00	118,42	15,68	44,73	27.16	1 385 2
52a1op15 xls	15C	S"ANR	0,0001	1.50	0 2,106	6513 į	30.30	85.00 ;	0_53	1 19	4 00	6,00	15,9C	10.00	2,00	4,51	7.45	10,36	0,00	975 9 1	9,00	0,00	140,42	20 08	5~06	56,02	2 85",1
518 ' 0020 x16	*5C	S"ANR	0 0001	1.50	0 2 104	613	36.30	85.00	0.53	1 19	4 06	600	2C OC	10 00	2 XC	451	7.45	10.36	000	1 572 32	0.00	: 20	160 42	24 OE	89 44		
111 '000' x14	20C	STANR	0.0001	2,00	0 2.47	2-36	30,30	85.00	0 53	19	200	6,00	, oc	*C 00	2,00	3 31	*01	67,5C	54 56	16.64	9,00	5,50	88 12	9.62	44	12.**	65 ,2
Sar*ap05.≥s	200	STANR	0,0001	2.00	0 247	136	10,30	95 00	0,53	19	2 00	600	5,00	.000	2,00	3 31	*01	27,90	609	155.64	6.00	0.00	104 12	12.82	22.36	1153	593,11
Sta oo'C x s	200	STANK	0.0091	2,60	0 2.47	2136	30,30	95,00	C.53	• 19	2 00	600	10,00	10 00	2,00	3.31	*01	\$.B4	0 00		2,30	5,30	124 12	16.82	44 *2	29 74	1 515,7
Statop 5 x ts	200 .	STANR	8,0001	2.54	0 2,47	2136 ;	30,30	95,00	0,53		400	500	15,00	-5,00	2.00	3 31	* 01	9.84	000		5,56	0.00	146.17	21 22	57.08	90 ' 5	3 967 9
States 20 vis	220	STANE	8 0001	2.00	0 2.47	2136 :	30 36	85.0C	2.53		4.00	5.00	20.00	10.00	2.00	331		9.54	con	1 675 74		2.70	195.12	75.77	99.44	34.90	4 539 99

CORTE																	Escay * e 2*	Escev de 2 cat. R3 : m3	Aterra R1 · m3	Revest RS m2	Aureae R\$ im	Limpeza R\$+m2	Espurgo RS : m3	Reg Prot. "al RS 1m2	Obras Comps.	Total Pt
Arquivo		Secto		m	.	к	Vazão (m3/a)	freeboard1	freeboard2	Pista Esq imi	Pasta Dyr	Altura dos Cortes irro	Revest.	Talude Ext.	F (m)	h jrrá Otrnizada	1 92	7 M	2 73	114.75	1.4"	0 10	1 55	1 07	~	, ,
Sta 1000 sta	·50	STANR	0,0001	1 500	2,1055513 j	30,30	85.00	0.53		2.00	6 00	1.00	10.00	100	451	7 45	101,05	89 22	3,30	600	0,00	80.42	0.00	2 83	18,31	932 56
āta apΩāxra	50	STANR	660'3	.504	2,1055517	30,30	85,0C	0,51	9	2.00	6 OC	5,00	,000 000	1,00	451	745	121 06	246,96	3 30	0,00	0,00	88,42	0.00	14.14	44 43	2 266,15
Star por Cura	·50	S"ANR	0,0001		2,1955513	30,30	65,00	0,53	• 3	2.00	6 00	10,00		1,00	451	7.46	146,05	489 01	0.00	300	0,00	98 42	0.90	26.78	84 25	4 29" 2"
States 5 rts	150	S"ANR	0 0001		2,1068513	30,30	65 ,00	0 53		4 90	600			1 00		7,45	195,35	826 11	0.00	0.00	9,00	110,42	0,00	42 43	140.7	7 145 85
Sta 1 op 20 x ts	150	STANR	0.000+		2 1065513	30,30	85.00	0.53	. • • •	4 00	500			100		7,45	221 05	12'82'	300	0.00	0.00	120 42	6.00	56 57	203.88	°C 39° 85
Sta 1 op 01 x to	200	S"ANR	0,0001	2 996		30,30	85,00		19	2 00	6.00			1.00		7,0	115 30	9 52		5,00	6,00	96 12	0,00	2.83	19.23	980 ⁴^
Sta 1 op 05 x in	20C	5"ANR	0.0901	2 000		30,30	85.00	0 53	1,19	200	600			100		76.	136 30	272 00	0 00	2,00	0.00	94.12	0,00	'4'4	45 99	2 498 42
Sta 1 op 10 x la	_20C	STANR	0.0001	2.000			55.00		1 19	2,00	6,00			1.00	3,3	7,0-	160,30	542 59	0,00	2.50	0,00	154 12		29,28	93 35	4 750 85
Sta1op15.xh	200	STANR	6,0001	2,000		30.30	85,00		1 19	4,00	500			·.oc	3,31	7,01	210 30	906 19	0.00	9,00	6.00	**6 * 2	5,00	42 43	153 BC	₹ 843 °€
Star op 20 .x/s	200 .	STANK	6,6961	2,000		30,30	85.00	0.53	1 19	4 30	5 00	20 00		1,00	33.	7 21	235,30	1 326,75	0.00	9.00	0.00	126 12	c oc	56 57	222 34	11 324 07
Sun5ooC* ≠s	150 j	STANR	8,0061		2 1066613	30,30	85.00	0,53	1 19	2,00	5,00	·.oc	10.00	1,50	4,51	· 45	93 55	97,22	0.00	5,00	0.00	51,42	0.00	3,51	·8·0	923 17
StaSopUS x16	150	STANE	8,6601	1,500	2,1066613	30.30	85,00	0.53	1 19	2,00	5,00	500	10,00	1,5C	4.5	7,45	133 55	245,90	0.00	6.00	0.00	93.42	0.00	9.03	45,01	2 295 36
StaSop10.xm	'50	STANE	9,8091	1,500	2.1958513	36,30	85.00	053	1 19	2,00	5,00			,5C	4,51	7,45	. 74 06	514,01	0.00	0,00	0.00	98.42	2.00	36,06	86,39	4 555
Sta Soc 15, xts	·50	STANR	0,8601	1 80 Q	2,1086613	30.30	35 00	0.53	1 19	4.00	6,00				4,51	~ 45	233 55	90	9,00	6.00	0.00	25,42	0.00	54,08	153 53	7 545 46
StaSop20.xia	:50	STANR	0 0001	1,500	2,1956\$13	30,34	85.00	0,53	1 19	4 00	6,00	20 OC	10 00	· 50	451	* 45	271.05	368 2	0.00	0:00	0.00	4C 42	0.00	72	230 35	11 732 65
StaSopO1 xta	20C	STANR	0,0001	2,000	2,472136	30,36	55,00	C,53	19	200	e,oc	-,00	1000	1,50	3 3 1	7 01	117,50	66 52	000	_000	0.00	87,12	0.00	3,81	19,23	970,3e
Sta5-p05.pts	200	8-700	0 0001	2,004	2,472114	30,36	₹5.00	53	- 13	200	8.00			1 50	3 31	7 01	147 90	272 00	coc	0.00	0.00	96,12	0.00	9,03	46.56	2.527,65
Sta5op10.xis	200	5"ANR	9,0004	2,000	2,472134	38,30	95 00	3,53		200	6,50	10,00	10.00	1,50	3,31	7,01	165,30	567 56	0,00	0.00	9 00	114,12	0.00	36,08	98,48	5 022,29
StaSog*5.z*s	230	5"ANR	0.0001	2,000	2,4 2114	30 10	55,00	2,53		400	6 OC	15 00		1 50	3 31	7,01	24 ⁷ ,90	963 19	3,00	0.00	0,00	131,12	0.00	54,08	·5".46	8 540,40
Sta50020 **s	°200	5-474	0,0001	2 000	2 4"2134	30 30	95 OC	0.53	9	100	6,00	20 00	10.00	1 50	3.31	7 91	265 3C	478 78	500	9 00	000	146 12	0.00	72	248 2*	12 658 57

QUADRO A2 1 10 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STANR PARA VAZÃO Q = 150 m³/s

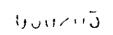
ATERRO)																	Escav 1* + 2* R33	Escav de 1 cat. R\$ 'm3	Alero RS : m1	Revest R\$ 'm3	Juntas RS m	Çambaza R\$ - nız	Exputyo R\$ m3	Reg.Prot.Tal	Obras Cornol R\$	Tota. Ri
Azquiva		Ţ	Seção		т_	м	. к	Vazão	treeboard 1	freeboars2	Pista Esq	Preta Oir	Arura gos	Revest	Taluda	F (m)	h (m)	192	7,96	2-3	114 *5	147	B 12	4,55	- 97	İ	ĺ
						L		(milis)	<u>; 279</u>	(mi	(m)	gm)	Aterros (m)	(cm)	<u>ea</u>	Otherside	Otmizado										
Sta 10p01 xts	50	<u> </u>	S"ANR	4,000%	1,500	2_1065513	30 31	150,00	0.63	1 34	2,00	6,00	1,00	10.00	2 00	\$,58	9.21	75.24	108,31	15 94	0.00	0.36	89,24	_ 9,95	4.4"	2. 63	23.5
Sta 1 op 05 x tu	- 50	c .	5 ANR	8.0061	1 600	2,1965613	اديەد آ	150 OC	0.63	7.34	2,00	6,00	5,00	10.00	200	5,58	9.21	45.24	32,90	142 34	3,00	000	106,24	13,05	22 36	15 83	0 ~~33
Sta 1 op 10 x ta	150	0.	STANE	9,9001	1,500	2,1065513	36.3	150 OC	0.63	34	2,36	6,00	10,00	10.00	2,00	\$ 58	9,2	14.11	3,30	45" 84	2,00	000	125,24	17.35	44.72	27,28	1 361 67
State 1 op 15 xts	150	o i	STAND	0.0001	1.500	Z, 1065613	30,30	150 OC	0,63	34	4.00	600	15 OC	.000	2,00	5 50	9.2*	12,57	3,00	1 005,78	5,00	0 00	47,24	21.45	6~ oe	_ 57,85	2 950 43
Sta on20.xe	150	0	STANR	0 9001	1,500	2 1045913	30,3	150.00	2 63	1 34	4 00	600	20 00	*C 00	2,00	\$ 56	9 2*	12,57	0.00	1 637 OC	2 00	300	167 24	25.45	7944	92 90	4 738 12
Sta opt x s	200	С	STANR	0,9001	2,900	2,472134	30,34	150,00	2,63	134	200	600	1,00	10,00	2,00	410	6,60	87,81	104.75	15,54	0.00	0,00	95,18	*1 23	4.47	_ 21,60	1 101.79
Sta 1 op 05 x to	200	С	5 ANR	0.0004	2,000	2,472130	30,3	150,00	0 63	134	_200	8.00	5,00	10,00	2.00	4.70	8 56	4 91	24 14	155.84	0.00	0,00	12.16	.443	22.36		*52 4E
Sta 1 op 10 x is	200	c	5"ÄNR	0.000*	2 000	2,472134	30,3	150,00	0,63	1 34	2,00	6.00	~0,00	10,3C	200		8.68	1 24	0.00	509.84	0.00	5,0C	32 15		44,72	36 9€	1 533,14
Sta 1 op 15 x ly	200	c _	5 ANR	0.0001	2,000	2.472136	39,3	150 00	0.53	- 34	4,00	6,00	*5,00	10 DC	200	(S	8.66	12,02	3 00		0.00	6,00		22,83	67,06		3 ' 29,38
Sta 100.31 xft	200	e .	SANR	5,0001	Z 900	2 472134	50 5	190 00	0.63	1.34	4 00	6,00	2000	10.00	200	4 10	5.00	12,02	0.00	1 760 41	0.00	0.00	17415		66 44	99.67	5 353 36


CORTE																		Escav * a 2* R\$ / m3	Encay da 3 cat. R\$ 'm3	Aterro R\$ 'm3	Revest. Rs : n3	Juntas 48 m	Limptza R\$ / m²	Exputgo R\$ ' TJ	Reg Prot™a R5 'm2	Obras Compl R\$	Totu R\$
Arqueva		Seção	1		-	M	к	Vazão 6m2/en	freeboard1	freeDCard2	Plata Enq	Preta Dir	Agura dos Cortes imi	Revest.	Talude Ext.	F (m)	h (m' Domizado	1,92	1,86	273	114 75	* 4*	D 10	1.85	10-		
Sta 10001 xia	150	5 ANR	-}	1.000	1 500	2,198683	34.30	15u 30 i	υ 6 5 .	34	2.00	5.00	1.00		1 00	5 58	9 21	118 **	154 14	2.00	300	200	₹ ⁷ 24	0.00	2.83	29 31	· 494 ·
Sta 10005 zls	50	5"ANR		8,0001		2,1056613	36,30	150 OC	0,53	- 34	2.30	6,30	5,0C	16,30	100	5,58	921	138 11	339 12	2.00	\$00			U DE	914	59 °2	3 348 38
S'8'00'C.×6	50	STANR		B,0001	1.500	2,1065513	30,30	*50 OC	0,63	34	2,00	€,30			1.00		9.21	153 11	615 34	3,3C	0.00	3,00	95,24	0.00	25 Ze	125.64	5 357 10
Star op 15 x 4	50	STANR		0 0001	1.500	2,1065613 ;	30,30	50,00	2,63	34	_100	9,00	15,00	10,00	•,00	5 Se	9,21	213,11	266,56	9.00	0,00	aac	17.24	300	42 43	56.39	849572
Sta op20 x=	-56	STANR		0 0001	1,560	2.1065813	30 34	150 00	263	134	4 00	600	20.00	43 00 CP	. 20	\$ 5e	9 Z*	238,11	1 4 2 79	0.00	0.00	6 OC	27.24	300	56 5°	235.52	12 011.72
Sta1op01 xis	200	STANR		0,0001	2 000	2.4"2138	30,34	150,00	963	134	200:	600	1,00	10 00	1,00	410	6,58	135,41	150,45	0.00	0,00	c,oc	94.15	2.00	2,53	30.53	1 5 7 50
Sta 1 op 05 .cla	200	STANR		4,0001	2 000	2,472134	30,30	156,00	0,63	34	2,00	500	5,00	10,00	1,00		8.68	155,41	372,13	COO	. 3,50	0.00	102,15	3,00	14 4	65,71	3 35',36
Sta 10010 sta	200	5"ANR		1.0001	2,000	2.4"2134	30,38	150,00	0,53	1 34	5.00	500	10,00	10,00	1 00	410	8.66	180 41	662,92	0,00	2,36	0.00	1 2.15	3,00 5,00 0,00	28,28	115,45	5 P4C,3"
Sta 100 15.x14	200	5 ANR		6,0001	2.000	2,472134	30,30	150,00	0,63	.34	4,30	8,80		10,00	1.00	4,10	8.68	230 41	288 73	3,00	9.00	0.00	124,16	0,00	42,43	63,33	9 346,54
Sta oc 20 x s	20C	STANE		0.0001	2.000		10.30	150 OC	2.63	_ 134	4 00	<u>€</u> 30	20 00	10 00	1 00	4 10	9,66		1 549 55	0.00	0.00	0.00	134 16	0.00	56.57	257 97	13 150 59
StaSopO* xm	50	STANR		9,0001	1,500	2,1055513	30,30	150 0C	0,63	34	3,36	6,00	1,00	10,00	1,50	5,58	9.21	120 61	152 14	2,00	0.00	0.00	56,24	0.00	3,6*	29,11	454,38
Sta Sepul5.xis	50	STANR		a 0001		2,1068613	30,30	190,00	3 63	1 34	2 00	6 00	500			\$ 58	9,2*	15C 61	339 12	9.00	0.00	300	100 24	630	100	60.36	3 078 21
Sta5oo10 xls	150	STANR		0,0001		2 1085813	30 30	150.00	2 63	1 34	5,00	5,00	10 00			5.58	9,21	188,11	540 34	9.00	0.00	3.00	15.24	0.00	35.36	110,17	5 6 6.54
Sta500*5.x4	150	5, ANR		6.0001		2,1068613	30,34	150,00	063	134	4,00	500	15.00		1 50	3 58	9,2-	25C,8*	061.56	0.00	9.00	3,00	32,24	9.00	54.08	180.05	9 152,35
StaSop20.cs		STANE		9,0041	1,500	2 1066613	30,30	150:00	0 93	34	_400	5,0C	20,90	10.00	1 50	5.58	9 21	286 11	562, 9	0.00	0,00	0,00	47,24	9 00	721'	281 TC	13 346 53
Sta5op01.xs	20C :	STANR		9,0001	7,000	2,472136	34.30	56,00	6,53	34	3,70	f,Y	1,30	16 OC	1 5C	4 10	5.66	137 91	157.45	0.00	2,20	6,00	25.15	200	36.	30 63	1 562 1
Sta5op05.xts	200	STANR		0,0001	2,900	2,472136	30,30	- 50 OC	5,63	34					1,50	4,13		157 91	372,10	9,00	3,30 (0,30	127,10	2.00	20.00	56.29	3,300 52
\$:a5op*Cxia	200	STANR		0,0001	2,900	2,472136	30,30	150 OC	0,83	34	2,00	€,00	10 DC		1,50	4,10	9 68	205.41	*07 92	3,30	0.00	0.00	172, 5	2.00	36.08	121,60	6.20° 81
StaSop' 5 xie	200	STANK		8.0001	2,000	2 472136	30 30	150 OC	3 63	1,34	4 00	5,00	15 00		1,50	4 16	8,58	257 91	1 163, "3	2,30	5 00	0.00	136,16	5,00	54,08	. 36 36	'0 046 4"
Sta5op20 x s	700	S_ANS		\$,0001	2 000	2.472*34	30 30	·50 00 ;	3 63	1 34	4 90	600	20.00	10 00	1 50	4 10	8 58	305 41	1 699 55	900	0.00	900	154 16	Ç 20	7211	294 15	14.49~ 50

QUADRO A2 1 11 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STANR PARA VAZÃO Q = 165 m³/s

ATERRO																	Escav * e 2* R\$ - m3	Escar de 1 cat R3 1m3	Aterro R\$ 'm3	Revest Rš · mů	Amles R3 · m	Limpeza RS - m2	Expurgo R\$ m3	Reg Prox Tai 93 m2	Obras Compi R\$	Tota ⁻ R\$
Arquivo		Seção		P ⁿ	- v	ĸ	vazão (m3/s;	"eepoard"	Yeeooard2 (m)	Propus Esq (m)	Pusta Ülf (m²)	Altura dos Aterros imi	Revest, (cm)	Tanacae Ext.	F imi	n čni Otimstado	***	**	1 -3	**4**5	A*	G 14	. 22		<u> </u>	
51810001 AM	50	STANR	0.0001	1,500	2,1065613	34,30	185.00	C,55 ;	- 38	2,30	6,00	1,00	2.00	2,00	5,75	≆,55	79,56	**9.5"	15 94	3,50	5.90	90.5*	2.1	4.47	23 50	203.52
Sta 10005.x4	150	STANR	0.0001	1,500	2,1966513	30.30	65.00	9,85	38	2,30	600	5.00	10,00	2,00	5,75	9,55	49,56	38 ***	142,34	5,00	3,00	'26.5"	.3,31	22,36	'5.9€	864 53
Statop10 xts	150	STANR	6,0001	1,800	2,1056513	30,30	165.0C	0.55	38	2,00	500	10 0X	10,00	2,00	5,78	9,55	5,95	3,00	457,84	0,00	300	125.57	٠٠,3٠	44,72	27,40	1 397 21
Sta 1 op 15 x %	50	STANR	0.0001	1,500	2,1068813	36,30	165.0C	0,95	1,38	4,30	600	15.00	10,00	2,00	5,79	9,55	13,12	0.00	1 011,02		9 00	`48 5"	2	57,06	5a I1	2 963 68
5ta 1 op 20 × 6	150	STANR	6.0001	1 500	2,1068813	36 30	165.00	0.55	1.38	4,00	6,00	20 00	10,00	2.00	5.71	P.55	13,12	0,00	1 547 59	e 50	300	158.5	25.*1	59,44	23 53	4 759 87
Statop0'x1	200	STANR	6,0001	2,800	2,472134	30.30	155.00	0.65	1,38	2,30	6.00	1.00	12,00	2 00	4.25	8,99	9',84	116.49	18,64	9,00	000	27.73	*: 55	4.4"	23 63	1 205 00
5a10005.xs	200	STANR	9,5601	2,600	2,472138	30,30	-65.0C	0.95	1 38	2,30	600		-2,00	2,00	4.2	8,99	51,84	29 55	155,64	0,90	0.00	. ت.	14,75	22,36	16,3"	834 **
Sta 'op'C.xis	200	STANR	0.0001	2.000	2,472136	38,30		0,95	. 38	2,00	600	10 OX	10,00	2.00	4,25	5,99	12.71	0.00	506,84	6,00	0.00	.33 "3	.875	44.72	30.13	1 536 55
Sta op 5 xts	200	STANR	6,6901	2,900	2,472136	10,30	·95.00	0.95	38	4,30	600	15.00	10,00	2.00	- 25	8,99	12,45	0.00	1 102,4"	9.90	900	55.3		87,08	53 13	32 954
Sin inn2C va	206	STAVE	9 9001	2,800	2 4"2134	36 30	95 X	C 95	. 38	4 20	600	~e oc	10,00	2:00	4 2	9 99	12.45	0.00	1775.06	0.00	000	.75.73		99 44	100 50	5 125 "4

CORTE																	Escay * e Z R\$: m3	Escav de 3 cat. 98 im3	Aterro R\$ / m3	Revest R\$:m3	Juntas Rš 'm	Limpeza R\$: m2	Expurgo R\$ / m3	Reg Proc.Tax R\$:m2	Opras Compt RS	Total RS
Arquivo	- 1	Seção	-	F	_ w	K	Vazão	Teeboard 1	treeboard2	Pista Eaq	Pista Dir	Artura dos	Revest.	Takude	F(mi	n (m)	1,92	7 96	2 -3	114 75	1 4"	4 10	. 88	- 0-		ı l
	\rightarrow				L		[m3/s)	<u> </u>	(m)	(m)	(m)	Cortes (m)	(Crei)	Ext.	Otimizado	Otimizado										
Sta 1 cp01 xta	150	STANR	0,0001	1 500	2 1055513	30,34		. 0,55 ;	1,38	2,30	6.00	1,00		1,00				168 55	2,00	0.00	000	58.57	0.00		33	1 618.45
Sta 10005 xts	50	STANR	0 0001		2,1055513	30,36		0,55	- 38			500	:3,00	1.00		9,55	141,43	358.85	2,30	0.00	0,00	26.5"	0,00		53,08	3 21 5 82
Sta1op10.≥ta	150	STANR	0,0001		2 1956513	30,30		0,66	1,38			10,00		·,oc	5,78		186,43	641 "?	0,00	0,00	000	'06 5"	0.00		109,31	5 5 T 9C
Sta1op15.sts	150	STANR .	0,0001	1,500	2,1856813	30,34	95,00	0,65	38	4,30		15 00		1,00	5,78	9,55	2.6,43	1 019 58	3,35	0.00	0,00	85	6,00		171.77	8 760 46
Sta 1 op 2C. ca	150	STANR	0 000 ₹	1 600	2 1066513 :	30 34	55.00	3.65	· 3e	4 30	600	20 00	10 00	· ac	5,79	9 55	24'_43	1 452 45	0.00	cac	000	26.5	300	56 57	241.07	2 340 42
Sta lop()* x's	200	STANR	0,0001	2,000	2,472134	30,30	95,00	0,65	38	2,30	600	1 00	10,00	1,00	4,25	6,99	139,34	174 60	2,00	0,00	0.00	95,73	0,00	2,83	33 40	1703 37
Sta 1 op 05, x ta	200	STANR	0 0001	Z 800	2,472138	30,34	165.00	C,95	. 36	2,30	6.00	5.00	^5,0C	.00	4,25	6,99	150,34	393 54	0,00	0.0C I	0,00	.03 -3	0,00	1414	59.25	3 533 3
Sta 1 op 1 C x cs	200	STANR	0,8001	2,000	2,472138	30,30	195.00	0,8€	.38	2,00	6.00	10 00	13,00	1,00	4,25	6,99		*12.22	;x	0,00	0.00	113,73	0,00	28.28	121,36	5 186
Sta1op15.x4	220	STANR	0,0001	2 000	2,472138	20,30	165,00	0,95	1.38	4,00	6,00	15 00	10.00	1,00	4,25			1 125 89	2,00	0.00	0,00	25.73	0,00	42,43	189 40	9 659,39
Sta 10020.x4	200	STANR ,	8 D00*	2 000	2,472136	36 30	165.0C	0.95	1,36	400	6.00	20,00	,e oc	.00	4 25	8 90	250 34	1 594 58	2.00	0.00	0.00	·35.73	0.00	56,57	265 30	13 530 36
StaSop01 xm	150	STANR	0,0001	1,600	2,1055613	30.30	165 OC	0,86	- 38	2,30	6,00	1,00	10,00	· .50	5,79	9,55	, 53°E3	165,55	0,00	0,00	0.00	89 57	3.00	3,51	3 53	1 606,06
\$ta5op05.xts	50	STANR	0.9001	1,800	2,1965613	30,30	165 OC	0,65	. 39	2,00	6,00	5,00	-0.00	1.50	5,78	9,56	153.93	358 85	0,00	0 00	0,00	101,57	0.00	.803	63,63	3.245,05
Sta5op10.xm	50	STANR	8,0001	1,500	2,1066513	34,30	165.9C	0 65	138	2,90	6,00	10,00	1000	1 50	5.78	9,55	191,43	666,72	920	000	6,00	116,57	0.00	36 06	114 50	5 639.34
5ta5op15.xts	50	STAVE	0.8001	1,500	2,1066513	38,30	165.00	0 65	38	4.0C	8,00	15,00	10.00	1 50	578.	9,55		1 094,58	0.00	2,00	2,20	133,57	0.00	54 08	185 43	9 45°.06
Sta5op20.xm	50	STANR	0 8001	1 500	2 1956513	34,30	165.00	0.65	1 38	400	6 X	20 DC	10 OC	1.50	5"8	9 55	291 43	1 602 45	0 20	0 00	0.00	148,57	0.00	72.11	268 14	13 575.22
Sta50001.xs	200 j	STANR	0,9001	2,200	2,472136	14.30	165.0C	966	1 38	2,00	6,00	1.00	1000	1,50	4,25	8,29	141,84	172,90	0 00	500	5,00	96,73	0.00	3,61	33,20	1 992,98
5'250005.x'S	200 i	STANR	0 0001	2,000	2,472136	30.30	165 00	0 65	1 38	2 00	6 OC	5 OC	10,00	1 50	4.25	8,99	171 84	303,54	0.00	0.00	2,36	108,73	0.00	18 03	69.65	3 562 54
Station*C xa	200	STANR	0 0001	2,800	2,472136	34,30	165.00	0.65	1 38	2,00	6,20	19,00	10.00	1 50		8.99		737,22	0,00	3.00	5,00	123,73	0.00		126,42	6 44°.55
Sassoar'5 xe	200	STANR	0 0001	2,000	2,472136	30 30	165 00	0.65	1 38	4,90	€,00	15,50	10.00	1 50	4,25	9,39	271,84	1 200 89	0.90	000	0,00	140,73	0.00	54 0e	203,06	10 356 02
StaSop2C.xx	200	STANR	0 0001	2 000	2,4*2138	30 30	165 OC	0 55	1 38	490	e 20	20 00	*0 OC	1 50	4 25	9 99	309 34	1 744 56	0.00	5 00	S 2C	155 73	0.00	T2 11	291 47	14 964 86

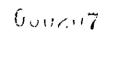


QUADRO A2 1 12 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STANR PARA VAZÃO Q = 180 m³/s

ATERRO					_							_						Escav 1 a 2* R\$ / m3	Escav de 1 cat. R\$/m3	Atems R\$ / m3	Revest R\$ i m3	Juntas R\$ 'm	Umpeze R\$/m2	Expurgo R\$ 'm3	Reg Prot *al R\$ m2	Obras Compl RS	™otel R\$
Arquivo		Seção		٦	Т	*	*	Vazāo ģm3/sj	freeDoard1	treeboard2 (m)	Prista Esq (m)	Puşla Öve (m)	Altura dos Aterros (m)	Revest. (cm)	alude Ext.	F (m) Otimzago	h (m) Otterdzade	1,92	* 94	2*3	114.75	1,47	D 10	1,55	10~		
Star opC xis	150	STANR	0.00	1.2	**	Z.11	30,30	180,001	3,67	1,41	2,00	6,0X	_ 100	17,90	2 OC	5,9"	9.87	52.64	31,63	5,34	၁၁	0,00	91 81	0,36	44	25,50	300 SE
Sta * ppC5 x lu	15C	STANR		1. 1.	50	2,11	30,30	90 00	0,6"	1,41	2,00	600	5,00	10,00	2,00	5.91	9,87	52.64	45,00		0.00	0,00	107,51	13,56	22 3¢	5.0	22° 68
Stu 1001D.xtu	15C	STANR	9,80	1.	49	2,11	30,30	150,0C	0.67	141	2,00	600	10 00	10,DC	2,00	5,97	9,6	20.11	0.00	457,84	0.00	2,30	127,81	17.56	4.72	27,50	c3.90
Sta 1 op 15,x14	150	STANR	9,00	1,	.64	2,11	30,30	190,00	0.67] 41	4 00	6,00	15.00	10 00	2,00	5,0"	9,87	13,53	0,00	1 214 46	0.00	500	149,51	21.95	57.08	58,32	2 974 54
Sta top 20 x ts	150	STANR	6.00	1	60	Z,16	36.30	180 00	0.57	141	4 00	6,00	20,00	10 00	Z,00	5,97	9 67	13 53	0.00	1 657 47	000	0.00	'58 6'	25 96	50 44	94 38	4 7 85
Sta 1opt)1.x1%	200	STANR	6,00	2,	ल्ल	2,4"	36,38	180,00	0,5	1,41	2,00	8,00	.00	10,00	2,00	4,39	9,25	95,47	127,84	16.64	0.00	0.00	99,19	11.84	447	25,59	1 305 00
Statep05.xa	206	STANR	9,00	2,	00	2,47	39,30	180,00	C.57	4	2,0C	6,00	5,00	10,00	2,30	4,36	9 29	55 47	35,09	155 84	0,00	0.00	**5,19	15 04	22,36	17,40	667,40
Scalop10.x4	200	STANR	0,00	2,	00	2.47	30,30	180,00	0,67	41	2,00	6,00	13,00	10,00	2,00	4 39	9.29	14.62	:,00	509 84	0,00	0.00	35 19	1904	44,72	30,22	1 541,02
Statep15.xm	200	S"ANQ	0.00	2,	.00	2.47	30,30	180,00	2,67	.41	4,00	6,00	5,00	10,00	200	4 39	9 29	12.84	2,30	106 17	5,00	0.00	157 19	23.44	£7,08	63 4€	3 237,25
Sta 1 op 20 x tu	200	S"ANR	9,04	2.	00	2,47	30 34	180 00	26"	',41	4 30	600	20.00	10.00	2.00	4 39	9.29	12.84	0.00	* 798 * 1	2.00	0.00	· *7 19	27 44	8 € 44	101 24	5 163 39

CORTE																_	Escav 1 e 2º RS / m3	Escay de 3 cat. R\$/m3	Aterro Rá / m3	Reveal. R8 / m3	Juntas Rå ' m	Umpeza R\$ / m2	Expurge R1 'm3	Reg Prot.Tal R3 'm2	Obras Comp. RS	Total Ri
Arquivo		Seção		f	м	!	Vazão (a-Em)	freeboard t	freeboard2	Pleta Eeq	Plata Dir	Altura dos Cortes emi	Revest.	*Akudo Egt	F [rri]	h (m) Otimizado	1 92	7 96	2*3	1471	1,47	0.0	1,56	1 07	1	l
Sta 1 op O1 x %	50	5*ANR	0,00	1 89	2,11	30.3	180.00	067	1 41	2 00	6,00	1,00	10.00	•.00	5,97	9.97	124.51	162.42	0,00	9.00	2,00	89 61	oc	2 83	34.06	• 737 23
Sta 1opUS.x≪	50	STANE	9.00	.64	z,	X4.3	€C,30	- 0,5	1,41	2.00	6.00	5,00	10,00	1,00	5,97	6,57	144,5*	377 65	5,50	0,00	5,50	97,51	0.00	1414	56 1 ⁷	33746
Statep1C_es	150	STANR	9,00	1,60	2,11	30,3	160,00	C,6**	1,41	2,00	8,00	*ē,50	10,00	.,00	5.97	9,87	169,51	566 67	6,00	0.00	3,00	167,61	0.00	25,28	5.46	5 56
3's 1 op 15 x s	150	STANR	0,00	1,50	2,11	30,3			41	4,00	6,00	_15,00		1,00	5.97	9.67	219,51	1 050,76	0,00	0 00	0.00	119,81	9.00		175.55	9 C19 2S
Sta 10020 xta	150	STANR	0.00	1.60	2,11	30 3	480,00	267	41	4 36	6 30	20 00	*C,00	1,00	597	987	244 51	1 489.73	0.00	000	0.00	129 81	900	56.5	248 02	12,649.26
Sta * optO1 xin	200	STANR	9.84	2,00	2.47	30,3	180 00	0.67	1,41	2,00	8,00	1,00	10,00	1.00	4 39	9,29	42.9	159,16	0.00	000	0.00	97,19	9,00	2,53	35,86	1 628,80
Sta TopOS xia	200	STANR	0.00	2,00	2,47	38,3	*80.00	367	1,41	2,00	6.00	500	10,00	1,00	4,39	3.29	162,97	413,81	0.00	0.00	0.00	135,19	3,00	4.4	72 67	3,735,96
Sia1op10.xis	200	\$*ANR	9,66	2,69	2,47	30,3	190.00	0.6"	1 41	2,00	6,00	10,00	10,00	1.00	4,30	9,29	187.97	² 39,86	0 00	2,00	000	*15,19	5,30	29,25	125,54	6 417
Sta 1 op 15 x is	200	STANR	0,00	2,00	2.47	30,2	90,00	0.67	1 41	4,00	6 00	15 00	10,00	1,00	4,39	9,29	237 97	1.180,80	0.00	5,00	0.00	127 19	0,00	42,43	195,10	9 950,0*
Start op 20 x to	200	5"ANR	_ D DC	2 89	2,47	30,2	90,00 je	0,67	1.41	4 00	6.00	20,00	1000	·.0c	4 30	9 29	252.9	^ 636,74	9 00	000	0.00	137 19	0.00	56.57	272,15	13 875,77
\$ta5op0* .rm	150	5TANR	0,00	1,60	2,11	30,3	180,00	C,E7	4	2.00	8,00	-,00	10 00	1,50	5,97	9,87	127 C	180,42	3,50	0,00	0,00	90,51	0,00	3.61	33,6€	728.84
Sta SopCE.xm	150	STANR	0,00	1,50	2,11	30,3	180,00	C,5°	4.	2,00	6,00	5,00	10 00	1,50	5,97	9,67	157,C	377 65	3,30	0,00	5,00	102,81	5,00		66,74	3 403,94
StarSop*0.x*u	15C	STANR	8,00	1,50	2,1*			0,67	41	2,00	8,0C	10,00	10,00	1,50	5,97	9 67	194,51	691 E ²	5,30	6.00	0,00	117,81	0.00	36,08	118,56	6 048,15
Sta Sop 15 x ta	15C	STANR	8,00	1.60	2,11	39.3	180,30	0,67	1,41	4,00	8,30	15,00	10.00	1,50	5 97	9.87	257,01	1 125 70	2,00	0.00	0,00	134,51	0.00	54,38	190,51	9 7*5.92
Sta5op20.xis	150	STANR	0,00	1.40	2,11	30,3	160.00	0.67	1,41	4,00	6,00	20 00	10,00	1 50	5 97	987	294 51	_ 1 639 "3	0.00	0.00	6.00	149 81	_000	72,11	274,20	13.984.07
Sta Sop 01 xrs	200	S"ANR	9,00	2.00	2.47	30,3	180.00	0 67	1 41	2,00	6,00	100		1,50	4,39	7,29	14547	197,16	0,00	0,00	0,00	98,19	0,00	3,61	35,66	1 915 41
≽ а сориб хв	200	57413	9,00	2,60	2,47	10,1	- anno	0,67	14	200	6,00	5 00	10.00	1,50	4,39	L 9,29	175,47	413,91	0.00	2,00	0.00	10,10	0.00	18 02	73.24	3 735.19
Sta5op*0.xm	200	5"ANR	0,00	2,00	2,47	30,3	180 00	0.67	Ť	2.00	6 00	10,00	10 00		4,39	9,29	2*2.9*	784,98	0,00	5,00	0 00	<u>دا م</u>	0.00	36,36	30.9"	ಕರ್ನಾಣ]
Sta 500 ' S.xta	200	STANR	9 00	2,00	2,47	30,3	90.00	0.57	¥	4 00	500	15,90	10 00	50	4,39	9,29	275.47	1,235,50	0.00	0,00	0.00	142.19	9,00	54 DE	206 76	10 645,71
Sta Sop 20 x la	200	STANR	0,00	2.00	2 47	30.3	90.00	0.67	4	400;	6 00	20,00	10 00	1,50	4,39	9 29	3.297	1 766,74	300	0.00	0.00	157 19	0.00	72.11	298 32	15 214 5

QUADRO A2 1 13 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STIR PARA VAZÃO Q = 25 m³/s


CORTE								_								Escav 1 + 2* R\$/m²	Escary de 3 cer. R\$ 'm²	Aterro R\$/m²	Revest. RS 'T'	Juntas R\$ / m	Limpeza R\$ m²	Expurge R1 'm'	Reg Prot Tas R\$ - m*	Obras Cornol R\$	7 O'LEI R\$
OviupiA	Secto	_	T.	M	к	Vazão (m/vs)	freeboard1 (m)	freeboard2 (m)	Pieta Esq (m)	Pista Dir (m)	Altera dos Cortes (m)	Revest. (cm)	Tatude . Ext.	F (m) Ottmizado	h (m) Omizado	1,92	7,96	273	114.76	1,47	8 1G	1,55	1 87		
Sh2opC1 xis _2	STIR	9,9901	9,500	1,736068	71,43	25,00	0,45	1,96	_0,00	4 00	• 00	20,00	0,50	4.53	3,57	35 66	13.47	9,00	2,*5	7 28	54.26	0.00	324	215,46	*26,25
StiZopO5.xts 2	STIR	0,9001	9,500	1736068	71/4	25,00	0,45	1.08	2,00	4.00	5,00	20,00	C,50	4,53	3,67	45 66	68 52	2,20	2,75	7 28	58 26	0.00	-119	225,81	202, "5
StiZop10.ms 1_2	5***	0,0001	008,6	1,734068	71,43	25 00	5,45	1 06	2,00	4,00	12,00	20,00	C,50	4 53	3,67	58,16	159,83	2,50	2,75	7 28	63 26	0.00	22,36	24',5"	951,32
StOpp15.xtm 1.2	57-4	0,0001	9,540	1,738068	71,43	25.80	_ C,45	.08	0.00	4,00	15,00	20,00	C,50	4,53	3 67	90,66	295 14	3,00	2,75	7 28		0.00	33,54	264,27	3 154 4"
502op20 mm 1_2	S"R	0,0001	0,540	1,736868	71,43	25,00	0,45	.06	0.00	4,00	20,00		2,50	4,53	367	183, 6	47,45	5,00	2,75	7 28				293,66	4,673.70
Strap3Cute 1_2	STR.	0,0041	8,600		71,43	25,00	3,45	- 08	0.00	4,00	30,00		1,50	4,53	367	223,16	1 350,07	0.00	2,75	7,28			84,85	438,33	12 041 58
Strop4C.xtm 1_2	ST R	0.0001	0 600		71,43	25.00	2,45	.08	0.00	400	40 00	20 00	1 00		3 57	293,*6	2 352 59	0000	2 75	7,28				501.2E	20 352 08
StGop01.xtm 1_3	5* R	0,8001	9,233	1,7742618	71,43	25,00	3,45	1.05	0.00		1,00		5,33		3 64	32,81		0.00	2,77	7,36		2,20		203 39	*20 52
Sti3op05.xls 1_3	ST-R	9.8901		1,7748518	71,43	25,00	3,45		0,00	4,00	5,00		0,33		3.64	39,27		0.00	2,77	7,35	55,71	0,00		211,93	156,12
SIDop10.xis 1_3	5 P	6,8061	0,333		71,43	25,50	0,45	.08	6,00	4,00	10,00	20 00	0 33	524	3,54	47,81	144,25	0,00	27"	7,35 7,36	59,54	2,30	21,08	224 96	1.822.0⁴
StCop15 xls 3	5T-R	0.8601	0.333	1,7748618	71,43	25.0G	0.45	.38	9,00	4,00	15,00	20.00	0.50	5 24[3,64	86 44	264,45	0,00	2,77	7,36	67,38	2,00	33.54	249.16	3 054,55
Sti2op20.xis 3	51'R	0.0501		1,7748618	71,43	25,00	0.45	1,06	0,00		20.00		0,50	5 24	3,64	.00 94	461 34	0.00		?,35	72,30	0.00		Z*8,04	4 526 . ≘
Strop30 xh 3	STIR	9,9501		1,7749618	71,43	25,00	0.45	1,36	0,00		30.00		.00	5 24 ;	3,84	220,94		0,00	2.7	7,36 7,35	112,38	0.00		421,10	11 824 08
Sti op4C xts 3	STIR	0,0001		1 7744618	71,43	25.00	0,45	1 26	0,50		40.00	20,00	1,00	5,24	3 54	290,94		0.00	2.17		132 36	0.00	3.4	582 64	20 062 ê·
504opC1_cm 4	STI₹	9,0001	9,250	1,8115528	71,43	25 06	0,45	1,06	2,00		.00	20,00	C.25		36	31.18	15 62		2,80	7 42 7 42 7 42	52,47	0.00	2,08	197,97	722 01
StrepO5.xm 4	STIR	0,0001	8,260	1,8118828	71.43	25,00	ે,45	1 06	200	4,00	5,00		C,25	5,54	3,61	36,18	54,51	0,90	2,90	7 42	54 47	0,00		206 12	127.95
Steep10.xis 1_4	S**-R	0,000*	0.250		71,43	25 00	0,45	.05	0 00	4,00	15,00		0,25		3 61	42,43		200		7,42	55,97			216 11	749.21
Sti2op15 xis 1_4	S"R	0,0641		1,8116628	71.43	25,00	5,45		0,00		15,00		0.50		3,61	67,43			2,80	7,42 7,42 7,42 7,42	95.9~	2,00	33,54	242 80	3 000,33
StQcp20 x4s 1_4	5*R	£.00¢1	0,260	1,2119428	71,43	25.00	2,45		8.00	4,00	20,00	20,00	0.50		3,61	99,92	454,39	000	2.60	7,42	7.97	2,30		271,36	4 455 25
\$81 op 30 x is 1_4	S Fi	6,0001		1,8118628	71,43	25.00	0.45		0.00	4,00	30 00		1 00	5.64	3,61	219 93	1 313 82	0.00	2,8C	7,42	111,87	2,30	84,66	413,75	11 "28,4C
Sti og40 xts 1_4	STR.	0,0001	0.260	1,8116628	71,43	25,3C	0.45	108	0,00	4,00	40.00	20,00	1 00	5 64	3 51	289.93	2 303 54	000	2.80	7 42	131,97	0.00	113 14	5"4 58	19 934 5
StroopC xm 5	STIR	9,9061	1,200	1,8399078	1,43	25,00	0.45	1,08	0,00	4,00	1.00		0,20	5 89	3,59	30 36	1609		2 82	7.49	52,14	0.00	2.04	95,12	724 04
St-SupO5_xm5	STIR	0,0001	0.200	1,8398078	71,43	25,0C	0,45	1,36	6,00	4 00	5,00	20,00	Ç,20	5 89	3,59	34.36	63.8°	2,00	2,87	7,46	53,74	0 00	10 20	203,06	125 87
StrSop1Curts 5	STIR	8,0001	4,200	1,8389078	*1,43	25,00	0,45	1,06	9,00	4 00	10,00		6,20	5.89	3.50	39,36	132 56	0,00	2,82	7 46			20.40	214,41	7C*98
Striop15.xts 5	STIR	0,0001	4,200	1,5309078	71,43	25.00	C,45	1,08	C,00	4 00	15.00	20,00	C.20	5,89	3.50	64,36	231 32	3,30	2,52	7.46	57 "4	0.00	30 59	23. 3.	2 569 53
StiSep20.xip 5	STIR	8,0001	9.200	1,83900"8	71,43	25,00	0,45	1,06	C ²⁰	4 00	25,00	20,00	0,20	5.59	3 50	E9.36	360,94	3,00	2,82	7.46	59.74	0.00	60.00	Z52,22	3 636.09
Strep30.xls 1.5	STIR	0,0001	0,200	1,8309078	71,43	25.00	0,45	1.06	5,30	4.00	30,00		₹,25	5,96	3 56	105,86	744,99	9,00	2,82	7 46	66.14	0.00		315,41	5 858.5€
Sti3op40.xls 1_5	5-4	0 0001	0,200	1,8396078	71,43	25 00	0.45	.08	2 00	400	40.00	20,00	2 33	5 59	3 5G	158 03	1 351 80	0.00	2 52	7.49	78 4*	0.00	64 33	415.97	** 96***

QUADRO A2 1 14 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STIR PARA VAZÃO Q = 50 m³/s

CORTE																Epcay 1 a 2* R\$ / m²	Escav de 3º cat. R\$ / m²	Aterro R\$ 'm'	Revest. RS 'm'	Jurdse R\$ / m	Lampaza R\$ 'm'	Expurgo RS m	Reg.Prot.Tal	Obras Compt. RS	Total R3
Arquivo	Bação		w	-	K	Vazho (mřia)	freeboard1 (m)	freeboers12 (m)	Prete Eeq (m)	Plate Der (m)	Altura dos Cortes (m)	Revest. (cm)	Tanada Rel.	F (779) Ottonkanda	h (m) Ori=kanno	1,52	7,36	2,73	114.78	1,47	# 10	1 55	1.97		
Str2opC .th 1_2	5-R	0 0001	9,500	1,736068	71.43	50,00	0,48	1 11	0.00	4,00	1,90	20,00	2,50	5,68	4.76	41,67	29 61	5,00	3 52	9.32	56 75	2,00	2,24	27,14	1 215 65
\$112ep05_xtm 1_2	S*IR	0.0001	8,500	1,736068	71.43	50 00	0,48	1,11	0.00	4,00	5,00		0,50		4.76	51 67	94,50			9 32	60,75	5,00	**;**	268,07	1.575 05
Str2op10.x4 1_2	STIR	0,9001	9,540	1,738048	71,43	50.00	0,48	* * * *	0,00	4,00	10,00		0.50		476	54,37	198,33	0,00		9,32	65.35	9.00	22,3€	305,31	2.455.48
942op15.xm 1_2	STIR	6,9091	9,500	1,736968	71,43	50,00	0,48	111	0,00	4,00	15,00		0,50		4 76	96 87	34" 05	0,00		D 32	70,75	0,00		330,49	3 "39 A4 5 349 50
S82op20 xm 1 2	STIR	0,0001	0,600	1,736068	71,43	50,00	C.48	- 11	0,00	4.00	20,00		0.50		_476		54C,80	0,00		9,32	75,75	9,90 5,30	44,12	362.06	
Sis1op30 xis 1_2	STIR	0,8001	0,500	4,0000	71,43	50,07	C 48		0.00	4 00	30,00		1,00		4,76	229,37	438,25	0,00		B,32	5.75			510.48	2 913,22
Stilep40.xls 1 2	STIR	0,0001	9,600		71,43	50 00	C 48	1,11	0,001	4 00	40 00		1,00	580	4,76	299.37	2 465 73	0 00	3.52	9 32	135.75	3 30		677 39	21 43* 44
Sti3op01.xis. 1_3	STIR	8,8081		1,7748618	71,43	50,00	2,48	-1	0,00	4,00	1,30		0,33		4,72	38.36	31,14			9,41	55,35	9,30		260 47	1 011,24
Sti3op05.xls 3	STIF	8,9001	6,323	1,7748618	71,43	50,00	0,48	.11	0,90	4,00	5.00	20,00	0,33	9,80	4,72	45.05	31,22	0.00	3,55	9,41	58,C2	3,36	10,54	270.47	1 52 54
583ep*C.xls 13	STO	8,0001	9.333	1,7748518	71,43	50,00	5,48	1,11	0,00		10 00		0,33		4.72	53,36	181,31	0,00	3,55	9,41	61,35	0,00		265,31	2.281,21
58200 5 x ts 3	STR	9,0001	0,333	1,7748618	71,43	50,0°	246	1,11	0,00]		15.00		0,50		4.72	94,21	332,08	0.00		g_41	與何	0.00		31 1 38	3 607,81
\$820p2C.xts 3	5* R	0,0001		1,7748618	71,43	50.0C	346	1,11	0,00	4,00	20 00		C,50		4.72	108,71	521,5	0.00		5,41	*4,59	0.00		342 **	5 174,9C
Str10p3C.xxx 3	Ş* FL	6,0061		1,7740618	71.43	50,00	048	1,11	0.00	4,00	30 00		1,00		4,72	226,71	1 408,38	0 00	3,55	5,41	114,59	0,00		458 84	2 658,36
Stripp40.xts 3	ST-R	9.0061	D 333	1 7748618	71.43	50.00	0.48	1,11	0.00	4,00	40 00	20 00	1,00	6 80	4,72	298 **	2,425.22	COC	3 55	9,41	134 69	000	113 14	95 4 06	21 084 43
\$54op01 xie 1 4	S*IR	0,0001	0,250	1,8116628	71,43	50,00	0,48	1,11	0 00	4,00	1,00	20,00	0,25	7,31	4 68	36,77	32,01	5,00	3,59	9,5*	54,71	0.00	206	253.54	* 012,55
Sb4op05.xl4 1_4	STIR	6,9961	0,250	1,8115628	71,43	50,00	C,48	1 11	0,00	4,00	5,00	20,00	0,25	7,31	4.66	41,**	89,83	3,00	3,50	9,51	56,71	0 00	10.31	263,12	4,501,0€
\$ti4op10 xls 1_4	\$TIR	0,0001		1,8116628	71,43	50,00	0,48		0,00	400	*C,00	20,00	0,25	7,31	4 68	46,02	173 36	0,00	3,50	9,51	59 21	6.00	20 62	276 58	2.203,21
Sti2op15.xt4 1_4	ŝTi4	6,0001	4,260	1,8116628	**,43	50,00	0,48		0,00	4 00	15,00	20,00	0,50	731	4 66	93 02	325,90	9,00		951	69,21	9,00	33,54	303,35	3 552,62
\$820p20.xls, 1_4	S117	9,8081		1,8118628	71,43	50.00	2,49	111	0,00	4.00	20,00		0,50	7,31	4.65	105.52	512.93	3,00	3,50	951	74 21	0,00	44,72	333,69 4°9,56	5 '06,44
S01003C.xls 1_4	STIR	8,0001	0.250	1,8118428	71,43	50,00	3.48	1,11	3,00	4.00	30,00	20,00			4,68	225 52	394 20	0,00	3.59	951	114,21	0,00	84,95	419,55	12 544 95
\$810p4C.K% 1_4	5**9	8 0001	9,260	1.6115628	71.43	50 OC	0.48	111	5,30	4,00	40.00	20 CC	1,00	.3.	4 58	295 52	2 407,08	200	3 59	951	134.21	9.00	113,14	544 12	20 932 14
StrSopC1.xts _5	ST-R	8 000 1	0,200	1,2306078	71,43	50.00	0,48	1,11	0,50	4,00	1,00	20,00	6,20	7,63	4,85	35,84	32,56	0,00	3,62	3 60]	54,34	0,00	2,34	249.BC	1 015 09
\$85op05.xm 5	5"R	0,0001	0,200	1,8398078	71.43	50.00	0.48	1,11	0,00	4,0	5.00	20,50	0,20	7,63	4,55	39.64	89,11	0,00	3 62	9,60	55 94	9,30	10,20	259,23	1 491 14
StiSop10.xla5	S* 4	8,0001	9,200	1,8398076	71,43	50.00	0,48	1 11	0,00	4,00	10,00	20.00	0,20		4,65	44,84	58,80	0.00	3 62	9.60	57.94	5 96		2 2,33	2.159,28
Sti5ep15.xis 5	5~R	0,0001	9,200	1,8396878	71,43	50.00	0.48	1 11	0,00	4,00	15 00	20,00	G,20	1,53	4,55	89,84	278,49	0.00	3 62	9,60	59 94	0,00	30,56	290,98	3.119 16
S850020.xla 1 5	S*R	0.0001	0,200	1,8398078	71,43	50,00	0,48	1,11	0.00	4,00	20.00	20 00	0,20	7,83	4.65	74,54	410,18	0.00	3.62	9 60	51,94	200	40,79	313,53	4 295 45
Sti40g30,xts 1_5	5*IR	E.0001	0,204	1,8396078	71,43	50,00	€ 48	1,11	000	4,00	30,00	20 00	0,25	7 63	4.65	112,34	825,05	9.00	3,52	9,50	68,94	0.00	81,85	380,31	. 999
S83op40 x4a 5	S"R	8,0001	0.200	1,8396078	71,43	50 00	5.48	• 1•	0.00	4 00	40 OC	20 00	C 33	7 £3	4 65	161 51	1 463 60	0.00	3 52	9 60	9C 5C	0.00	94,32	484 36	12.9 ¹ 2.50

QUADRO A2 1 15 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STIR PARA VAZÃO Q = 85 m³/s

																	_								
CORTE															,	Escav 1 e 2º	Escav de 3 cat. RS 'm²	Aterro R\$: m*	Reveal. R\$ 'm'	Juntes R\$ (m	Limpeza R1'm'	Expurgo R\$ / m*	Reg Prot.*al R\$ / m*	Obras Compt RS	Total R\$
Arquivo	Seção	1 1	Tro.	1 4	к	Vazão	freeboard1	freeboard2	Prote Eng	Pista Dw	Altura dos	Revest.	Talude	Fimi	h (m)	1,82	7,96	2.73	114,75	1,47	9 10	4 88	1 07		
,				_		(27775)	(rel)	(PTO)	(m)	(m)	Cortes (m)	(cm)	Ext.	Otemizada	Orimizado	i		l							
Sti2op01 xis 1 2	ราส	0,9001	0,800	1,736068	71,43	85,00	0.53	- 19	0,00	4,00	1,00		0,50	7,17	5 80	47,92	49,85	5,50	4.2"	11,31	59,17	0.00	2,24	337 31	.339 22
Stf20005,xis 1_2	Stud	8,0001	0,600	1,738068	71,43	65,90	2.53	19	0,00	4,00			0,50		5 80	57.92	124,33	0,00	4.27	11,31	63,17	6,90 5,80	11,18	349,78	2 953 C2
Sti20p10 xts 1_2	S™R	8,0001	0,500	1,738068	71,43	65,00	0.53	19		4,30	10.00		0,50		5.80	70,42	240,17	0,00	4 27		68,17		22,36 33,54	366.9€	2 953 C2
S82op15_ns 1_2	\$* R	6,0001	0,600	1,734068	71,43	65,00		19		4,00			0,50		5.80	102,92	401,32	0,00	4 27	11.31	73,17 78,17	2,00 5,30	33,54	396.05	4 335 30 8 343 78
St(2op2) xts 1_2	8 ⁻ R	6,0061	8,600	1,736069	71,43	65,00	0,53	1 19	3,00	4,00			0,50		5.80	115,42	906 66	0.00		11,31		5,36	44,72	429 55	
\$81 op 30 xtm 1_2	S*R	6,8001	6,800	1,736068	71,43	85,00	_0,53	1,19					1,00		- 0,00	235,42	1 526,55	0.00	4,27		118,1"	3,20	84,85	581,83	13 610,03
5t10p40.xts 1.2	ST R	6,8661	9,600	1 736866	71,43	85,00		1 19	9,00	4 00	40,00		1,00			305,42	2 560.23	0.00			136,17	0.00			
St3op01 xis 1_3	5"R	9,9991		1,7748518	71,43	85,00		1 19					0,33			43,99	51.31	000			57,60	0,00		317,11	1 329,31
5#3op05.xis 1_3	STR	9,0001		1,7748518	71,43	85.00		1 19					0,33			50,80	120 36	0,00	4,31		60,26	0.00			1 912,52
Sti3op*) ris 3	5TIR	0,0001		1,7748518	71,43			1 19					0.33			58,88	221 67	0,00			63,60	0.00		345,22	2 783,25
Stf20015.xds 1_3	ST'R	9,8801	£££.0	1,7749618	71,43	95 00	0,53	1 '9	0.00	4.00	15,00		0.50			99,82	384,64	000	4,31	11,42	*1,93{	0.00	33 54	373,02	4 180,91
StiZopZ) x 3		0,8601	6,233	1,7748618	71,43	85,00	0,53	1.13	0,00	4,00	20,00		0,50		5,76	**2,32	584,29	0,00	4,31	1142	78,93	0,00	44.72	405,53	5 639 06 13 504 64
Stitop3Cate 3	STIR	0,0001	8,333	1,774861B j	71,43	85,00	3 53	1,19		4,00			1,00		5,76	232,32	493,58	8,00	4,31	11.42	'16,93	0,00	94.85	555,84	
Sti op40 xm 1_3	STIR	0 0001	0,133	1,7748618	71,43	B5 00	0 53)	- 9	0.00	4 00	40 00	20,00	1.00	E 3C	5.76	302,32	2.532,57	2.00	4,31	11,42	136 23	0,00	113 * 4	T24 53	55 583
\$040p01.xts 1_4	\$TIR	0,0001		1,8115528	71,43	85,30		1,19					C,25		571	42,18	52,28	5,00	4 36	11,55	56,87	0,00 0,00	2,96	308,71	1 330 ⁷ 8
S84op05 xts 1_4	STIR	0,0941	0,260	1,8116628	71.43	85,00	0.53	19	0,00	4,30	5.00	20,00	C,25	6,92	5,71	47 18	118,17	0,00	4,36	11,56	58,87		10,31	319 66	1 689 58
Sh4op10.xh 1_4		0,0001	0,200	1,8115528	71,43	. 85 00	0,53	19	-0,00	4,00	10,00	20,00	0,25	8,92	5 71	53 43	213,12	0,00	4 36	11,55	61,31	0,00	20,62	335,15	2.679.43
S&2op15.xis 1_4	Switz	0,9041		1,8119828	71,43	35.00	0,53	19					0,50		5 71	96.43	377,48	0.00	4,36	11,55	71,37	0,00		363 34	4 117,12
Sx2op20.xis 1_4	5* R	0,0001		1,8115628	71,43			1,19					0,50			0 93	574,34	0,00	4 36	11,55	70,3"	5,00	44 72	395 41	5 752.64
S610p3) xis 1_4	STR.	0,0961	1,266	1,8115526	71,45	95 00		1,19	0,00	4,00	30,00	20,00	1,00	892	5,7*	230,93	1 476.05	0.00	4 36	11,55	116,37	2,30	84,85	544 63	13 372,95
Sti10040.xts 1_4	S"R	0.0001	0,250	1,8115528	71,43	55.00	0.53	1 19	300	4 00	40,00	20.00	1,00	8 92	5.71	300 93	2511 78	0.00	4 36	11 55	136,37	0.00	13 14	71273	21.935,57
ShiSopC X16 5	ST'R	6.0001	0,200	1,8396578	71,43	85.00		1 19	3,00	4,00	1,20		0,20	9,31		41,15	52,91	0.00	4,40	• 65	56,46	0,00	2,04	304,29	1 333,92
S050005.cs 1_5	\$TIR	0,0001	0,200	1,6396672	71,43	85,00	0,53	1,19	5,00	4 00	5,00		0,20			45,15	117,95	0.00	4,40	11,65	58.06	0.00	10,20	3'497	1872,79
StiSop10 rs 5	STR	6,0001	1,200	1,8396578	71,43		0.53 i	1 19	0,00	4 00	10,00		0 20			5C,15	208.25	0.00	4,40	1,65	60.06	0.00	20.40	329 76	2 633,06
S85op15.xu 5	ŞTIR	9,8981	0,200	1,8396678	71,43	85,00	0.53	1,19	3,00	400	15,00		0,20			°5,15	326,55	0.00	4,40	1,65	62.06	0,00	30,55	350 10	3673.2
Str5opZ; xm 5	STIR	9,0001	6,200	1,8394678	71,43	65,00	0.53	1 '8	0,20	4 00	20,00		0.20		5,66	80,15	478,85	9,00	4,40	11,65	64,06	0.00	40 79	3"4.44	4 911,56
5040p30 xie 5	STIR	0,0001	6,200	1,8308078	71,43		0.53	1.9		4,00	30,00		0,25		5 68	117,66	905,95	9,00	4,40	11.65	71.08	0.00	81.85	444,50	8 484,52
Cr3nn#Dub ' 6	CITS	0.0001	A 200	1 9366078	71.43	85 Y	0.63	1.10	2.00	400	40.00	20.00	0.33	6.31	5.68	186.82	· 546.72	2.00	4.40	11.65	12.71	0.00	84 33	551 97	13 061 11

QUADRO A2 1 16 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STIR PARA VAZÃO Q = 150 m³/s CÁLCULO DE SEÇÕES TIPICAS OTIMIZADAS POR CUSTO

CORTE				_												Escav 1 e 2 R\$/m²	Escav de 3 cat. R\$/m²	Alerro R\$ / m²	Revest. R\$ / m²	Juntas R\$ / m	Lampeza R\$ 'm'	Expurge	Reg Prot.Tal R\$ 'm²	Otiras Compl. Ril	Totak R\$
Arqueyo	Sação	1	m	¥	K	Vazdo	freeboard1	freeboard2	Prota Esq	Plate Dw	Alture dos Cortes (m)	Revest.	Talude Ext.	F (m) Otimizado	n (m) Odmizado	1,92	7,96	2,73	114 78	1,47	8 10	1.56	1.07		
382op01 zia 2	S*R	9,0001	8 500	1,736068	71.43	150.00	0,63	• 34	2,00	4,30	1,00	20 00	0 50		7 18	56 OC	83.14	0,00	5,2"	13,56	62,4C	0.00	2,24	419 35	522.44
St(20p05 xts 2	STR -	0.0001	0,500		71.43	150 00	C.83	-52	0.00	4.00	5.00	20 00	0.50		7,18		70.74	6,26		13,56	66.40	0,00	11 16	433.88	2.563,42
StiZop10.xts · 2	STR	0,8961	0,500		71,43	150.00	0,63	1.34	6,50	4,00	10,00	20 00	0.50	6.88	7.18		302,73	C 36	5,27	13 Se	71.40	0 00		455 62	3 672,33
582ep15.xx 2	STR	0,8081	0,600	1,730000	71,43	15C 00	0,63	1,34	6,00	4.00	15.0C	20,00	0.50	8,681	7,18		479.73	6,00	5.27	13.96	78.40	0.00	22,36 33,54	485,30	5,186,7"
Sti2op20.ru 2	STIR	0,0001	0,600	1,736068	71,43	90,00	0,63	-34	0,30	4,00	20,00	29,00	0.50	8,88	7.18	123.50	701 73	C,30	5,27	13,96	81.40	0.00	44.72	521 31	"025.4"
501op30.cm 1 2	STIR	0,0001	9,860	1,736668	71,43 ;	150,00	0,63	1,34	0,00	4.00	30,00	20,00	1,00	6,85	7, 8	243,50	1 655,72	0,00	5,27	13 98	121,40	9.00	84 65	678 "2	15 053.98
Stitos40.cm 1_2	STIR	8 9991	8,500	1730068	71,43	150,00	0.63	.34	0,00	4.00	40,00	20,00	• 00	6,88	7.13	313,50	2.739 72	0,00	5 2"	13 96	141 40	0 00	13 14	854 *0	24 025 15
S#3opO1_cis 1_3	STIR	6,9081	0.333	1,7748618	71,43	156,00	0,63	34	0,00	400	1,00	20,00	C.33	10,2	7.2	51,44	64,66	630	5,32	14.10	60,56	0.00	2,11	364.40	1 805,59
983op05.zin 1_3	STIR	9,0001	0,233	1,7748618	71,43	150,00	0.63	1,34	0,00	4,00	5,00	20,00	0,33	10 27	7. 2	58,*1	165,86	0,00	5,32	14,10	63,24	0 00	10,54	40', 3	2,488,64
\$83ep10.xm 1_3	STIR	0,9001	9,333	1,7748618	71,43	150 OC	053	1,34	0,00	4.00		20,00	0,33		7.2		262.00	0,00	5,32	14 10	66 56		21,08	426,78	3 460,31
SM2op15.zig 1_3	ราส	6,8001		1,7748618	71,43		0.63	1,34	0.00	4,00	15 0C	20,00	0,50	10,27	7. 2		459.98	0,00	5,32	14 10	74.91	0,00	33,54	456,95	4,999,04
S82op20.x8s 1 3	S. d	6,6001		1,7748618	71,43	15G 3C	063	134	0.00	4 00	20,00	20,00	0,50	10.27	7,12		674 50	2,26	5,32	14.10	79,91	Çoç	44.72	491,84	6.776.19
Still op 30 xts 1 3	8⁻₁₹	9,6001		1,7748518	71,43	150,00	0.63	1,34	0.00	4.00	30 00	20,00	1,00	10,2"	7,12		1 613 60	0.00	5 32	14 10	19,91	0,00	54,65	846,86	14 685 ***
Still op 40 xts 3	5" 4	0,0001		1,7748518	71,43	150 OC	0 63	134	0.00	4,00		20,00	1.00	10.27	7,12		2 682 70	0.00	5.32	14,10	139.91	a oc	**3.14	62G 4G	23 535 67
384op(11_cm 4	5* F	0,0001		1,6116628	71,43	150 00	0,63	1,34	0,00	4,00		20,00	0.25	11,04	7.07		86 00	0,00	5 38	14,26	59.74	€,00	2.08	384,02	1 810 34
364op05.xis 4	ST'R	0,0001	0,250		71,43	150 00	0,63	1.34	5,00 5,00	4,00	5,00	20,00	0,25	04	7 07		163,97	0.00	5,38 5 36	14,26	51,74 54,24	2,00 2,00 5,00	'0 31		2.462,0"
String Care 4	ST'R	0,0001	0,260		71,43	150 00	C,63	-34	5,00	4,00		20,00	0 25	54	7 07		272,68	0.00		14,26		S _{OC}	20 62	414,58	3 368 44
5t(20015 xis 1_4	STIR	0,9001			71,43	150,00	0,63	1,34	5,00	4,00	15,00	20 00	0.50	11,04	707		451,39	0.00	5 36	14,26	74,24		33.54	445,06	4 922.6"
St20p20 xts 4	ŞTID	0,0001	4,250		71,43	*5C,00		-34	0,00	4,00	20,00	20 50	0 50	11.04	7 07		962,60	0.00	538	4,26	79,24		44.72	479,41	6 574,70
Str1ap30 xie 1 4	STIR	9,0001	0,260		71,43	5C 00	2,63	-34	6,00	4,0g	30,00	20.00	1,00	11,04	7,07		* 595,01	0,96	5 36	14,25	**1.24		84 85	633,36	4 525,3€
Sti1ep40 zip 1_4	STIR	6,0081	9.250		71,43	-50 00	0.63	. 34	0,00	4.Dc	40,00	20 00	1.00		7.07		2 667,43	0,06	5 38	14 26	139 24		**314	805,96	23.324 05
StiSop01.em 1.5	ราส	8,9001		1,8388078	71,43	156,36	263	34	0,00	4.00	1,00	20 00	C,20		7.03		66,75	0,06	543	4,38	59,27	9 00 9 00	204	378,56 391,34	1 613,2"
5050p05.xx 5	577	3,8001		1,8394078	71,43	150,00	283	134	0.001	400	5.00	20.00	0,20	11 52	נס.י		183,23	E,50	5,40	14,38	50,8°			397,34	2446.54
\$850p 0.cs 5	5713	9,8601	9,204	1,839607B	71,43	150,00	0.63	1,34	0.00	4,0c	10,50	20,00	C,2C	11,52	7,03		267,3*	6,00	5,43	14,38	62.67	0.00	20 40	408,08	3.316,29
\$8500 5 xm 5	5"-R	8,6001	9,200	1,8396078	7143	156,00	0.63	1.34	0,00	4.05	15,0C	20,00	C,20	11_52	7.53		401,72	C,20	5,43	4,38	64,67	000	30,56	430,54	4 469,39
\$050p2C zm5	5* R	0,0001	0,200		71,43	150,00	0 63	1,34	0 00 -	4.00		20.00	<u>::</u> 25	11 52	7,23		566 CT	0,00	5,43	4,3e	65.E7	0.00	40.75	457,21	5 824 9C
9640p30.xin 5	STR.	0,0001	0,200	1,8396078	71,43	150 ac	0.63	134	0,00	400	30,00	20,00	2,25	11,52			1 022,7	0,20	5,43	4.38	73,67	0.00	51 65	531,74	9 626 00
St:3op40_sts 1_5	STR	0 0001	0.200	1,8396078	71,43	150 00	C 63	134	9.00	4.00	4000	20:00	0.33	11 52	್ತ ಇ	173.84	1 710 12	5,00	5 43	4 36	85 54	0.00	54 33	543.65	15 332 92

Voller C

QUADRO A2 1 17 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STIR PARA VAZÃO Q = 165 m³/s CÁLCULO DE SEÇÕES TÍPICAS OTIMIZADAS POR CUSTO

CORTE						_											Escav1 e 2 R\$:m4	Escav de 3 cat. R\$ 'm'	Aterro R\$/m²	Revest. R\$ f m²	Juntas R3 / m	Limpeza R\$ 'm²	Expurge R\$ / m²	Reg Prot.Tal	Obras Compl R\$	"otal PS
Arquivo		Sec.4a	- '	U.	M	K	Vazão (m²/s)	freeboard1 (m)	freeboard2 (m)	Plata Esq [m]	Pusta Dir mi	Altura dos Cortes (m)	Revest.	Tajuda Est.	F (m) Otimizado	h (m) Otengado	1 92	7 34	2.73	114 75	1,47	0 10	1,85	. 0.		
St-20001 xm	2	STIÈ	0,8001	9,500	1,738068	*1,43	155,00	0.65	1,35	300,	4 00	1.00	20.00	0.5C	9 20	7,84	57,55	90 53	0.00	5,46	14,42	63 02	Ç.DC.	224	435 13	922,72
S=20005 xm	2	Sîle	0,0801	0.800	1,738069	71 43	·65,00	0.65	1,38	0,00	4 00	5,00	20,00	0,50	9,20	7,44	67.56	180 63	0.00	5,4%	14,47	67.C2	0,00	11 18	450 06	2 583 98
Sti2op10 xtm 1	2	ST'≒	0,0001	9,500	1,736968	71,43	155,00	3,65	1,38	300:	4.00			C,50		7,44	80,05	315 "5	0.00	5,46	14.47	72 02	6,00	22 36	472,30	3 818.23
\$tt20p15.xtm 1	2	ST'Q	0,8001	9,500	1,734948	71,43	· 55,00	0,65	1,38	0.00	4 00	15,00	20 00	C.50	9.20	7,44	112,56	495.87	0.00	5,46	14.47	77,02	6,00	33 54	502 47	5 35 ° C2
Sti2op20.xhs 1	2	STR	0,0001	0,844	1,736068	71.43	*65_00	3,65	1,38	0.00	4,00			2,50	9 2C	7,44		*20,96	0.00	5,45	14.4"	52,02	6 00	44.72	539 34	? 222 00
\$810p30 xls 1	2	STR	8,0061	0,500		71,43			1,38		4,00			1,00	9,20	7,44	245,05	1 581,22	0.00	5,48		122,02	0,00	84 85	697 46	530 2
5810p40.xis 1	2	ST R	6,0001		1 73006E	71.43	185.00		·,38	3.00	4,00			1,00		7,44		2 **1.48	0.00	5.46	14 47	42 02	0,00	**314	874,36	24 323,14
Sti3op()* zie 1	3	5* R	6,0061		1,7748578	71,43	165,00		1,38	6,00	4,00	.00		0,33		7,38		92,29	0,00	5,5	14.61	61,15	0.00	2,11	409.27	1 906,07
Sti3opO5 etc. 1	3	S* R	5,0001		1,7748618	71,43	165,00	3,65	1,36	0,30	4,00			0,33		7,36	59,54	175,55	0,00	5,51		53,62	0,00		422,91	2 606 64
Str3ep+C.xx	3	S"·R	0,0001		1,7748618	71,43	185 00	0,65	1,36	0,00	4,00			0,33		7,38	87,87	294,63	0,00	5,51	14 61	87,15	0 00	21,08	442,40	3 601 64
5120p15 xm	3	3"IR	9,8091		1,7749618	*1,43	165,00	0.95	1,36	0.00	4,00			0.50		7,38		4*5,38	3,00	5.5)		75,48 80,48	0,00	33,54	4*3 11	5 163 57
\$120020 x=		STIR	9,0001		1.7742610	71,43	165,30	0.65	1,38	0.00	4,00			0.50		7 36	121.21	692,79	0.00	5,51	'46'		3 00	44.72	505 46	6 995 98
S010030 xin	3	STI₹	0,0001		1,7748818	71,43	165,00		1.36	000	4,00	30,00		1 00		7.38	241,21	1 637,62		5.51		120,46	3 <u>,0</u> 0	84,88	664 41	14 920,09
String-40 xis	3	STIR	0,0001	0,333	1 77 486 18	71,43	165,00	0.65	1,38	0.00	4 00	4000		1,00	12 64	*.36		2 12 44	0.00	5.51	14,51	140,48		113 14	53 8 86	23 915 82
Sti40p01.xla 1	4	STIR	8,0041		1,2115628	71,43	*85,0C	0 65	1,36	0,00	4 00	1,00		0,25	11,44	7,33	50 <i>7</i> 3	93,42	0.00	5 58	14,75	60 29	2,30 2,50	2,38	398,52	1 909.37
Sti4op05.xts 1	4	STIE	8,0091		1,8115628	71,43	-65,0C	0.65	1,38	9,00	4 00			0,25	11 44	2,33	56.73	173,58	0,00	5,58	14,79	52.29 54.79	0,00	10,31	411,95	2 5 79,25
5640p*C.xts 1	<u>4 L</u>	\$1°₽	6,0001		1,8115626	71.43	165 QC	0.65	1,38	0,00	4,00			0,25	11 44	7,33	61,95	265 05	0,00	5.58			9,00	20,62	429,96	3 507 87
\$820p*5.xts 1	•	ST P	0,0001		1,8115528	71,43	185.00	0,65	1,38		4.00			0,50		*,33		466 51	0,00	5,58		74 79	0,00	33 54	460,79	5 084 54
5t2op20 ms 1	4	5* P	6,0001		1,8116828	71,43	165,00	3,95	1,38		4,00			2,50	11 44	7,33		680 47	0,00	5,58		79 79	0.00	44 72	495,57	5 858 9*
Sc10p30.xm 1	4	S"R	0,0001		1,8116828	71,43			.30		4.00				44			1 615 30	0.00	5,58		119 79	0.00	84 85	650,43	14 756 96
\$810p40.xin 1	4	5 /R	8,0001	6,260	1,6116626	71,43	165.00	3,65	1,36	5,00	4 00	40,00		1,30	11,44	7,33	308,49	2 686 31	0.00	5,58	14 78	139 79	0.00	11314	823, 78	23 997 61
Sti5op01 xtu	5	5TIR	0,0001	4,200	1,2396078	71,43	165,00	0,65	1_36	0,00	4,00	_		7,20		7,29	49.52	94,18	0.00	5,82	14,91	59,81	0,00	2 04	392.8e	. 31314
SU5co05.xia	5 i	5TIR	8,9561	6.200	1,8396078	71,43		5,65	1,36	0,00	4,00	5,00		0.20		7,28	53,52	1 *2 61	0,00	5,62	14,91	61,4"	0.00	10.20	405 68	2 566 82
SH5op 0 xia	5 I	STIR	8,9001	9,200	1,8396078	71,43	165,00	0,65	1 38	0,00	4,00	*0.00		0.20	11,941	7,28	58,52	2*9.65	0.00	5,62	14.9"	63.41	9,90	26,40	423 13	3 457,00
SH5op15 xls	5	STIR	8,9001	8,200	1.2386078	71,43	155,00	0.65	1,36	0.00	4,00	15,00		0.20	'' 94;	7.2t	83,52	416,69	0.00	5,82	14,91	65,41	9.90	30,59	446 13	4 529.93
5050620.xis	5	5114	0,0001	0,200	1,8398078	71 43	165,00	0,65	1.38	0.00	4,00	20,00		0 20	11,34	7 28	86,52	583, 72	0.00	5,62	14.91	5'.4'	2 00	4C. '9	4*314	£ 00°.2*
\$84063Cx4s	5	STIR	0,0001	0.246	1,5396078	71,43	155,00	0,65	1.38	0.00	4.00	30,00		0 25	11,94	7 28	126,07	645,30	9.00	5,62	14.91	74,4"	3.00	81,85	548 53	9 852,00 15 802 57
St-3064C xm 1	5	ST'₹	0 0001	0,200	1,2396078	71.43		0 65	1 36	000	4 00	8	20,00	0 33	11.94	7.28	175 15	· T38 54	0.00	5.62	14.91	96 07	0.00	84 33	6£1 2£	15 502 57

QUADRO A2 1 18 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STIR PARA VAZÃO Q = 180 m³/s

CORTE																	Escav 1" s 2" R\$ / m²	Encay de 3º cat. R\$/m²	Aferra R\$/m²	Revest. R\$/m²	Junias R\$ · m	(,mpeza R\$ (m*	Expungo R\$ m*	Reg.Prot.Tal	Otras Compi R\$	Total Rii
Arquivo		Seção		m	M	к	Vazāo (m²/e)	freeboard1 (m)	freeboard2 (m)	Pista Esq (m)	Pupus Chr (mi)	Altura dos Cortes (m)	Reveal. (cm)	Tatude Ext.	F (m) Otimizado	ካ (ጦ) Otomizada	1,92	7.96	2.73	114 75	1,47	d 10	1.56	4 07	1	
StrZop01_ris 1	_2 .	ST-R	0.9091	9,500	1,738068	71,43	. 90,00	0.67	1 41	0.00	4.00	.00	20 00	0,50	9.51	7,59	59 01	97 64	2,00	5 64	14.95	53,61	3 00	2,24	450,12	2 01 5 58
Str2opO5_cia 1	_2]	ST'R	1,0001	0,500	1,736068	71.43	180,00	0.67		0 003				2,50	9.51	7,59	69 01	190 0"	0,00	5_64	1496	57,51	2,00		485,42	2 795 74
3.200 U.S.	2	STIR	9,0001	D,\$00	1,738088	*1,43	180,00	6,67		0.00				0,50		7,69		326 10	0,00	564	14.95	72,81	D 00	22,36	468, 2	3 966 62
\$520p15.xis 1	_2 j	STIR	0,0001	0,560	1.736968	71,43	160,00	3,67		0.00		15,00		3,50		- 69	11401	511.13	6,00	5.64	14.95	77,81	200	33,54	519,75	55'904
SS2op2C.zie 1	_2	STIR	6,0001	0,506	1,736966	*1,43	180,00			0.00	4,00	20,00		0,50	9,51	7,89		"39,16	0.00	5 64	14,95	82,61	300	44,72	555,79	7 4C" 6E
Striop3C.cm	2	STIR	0,8001	0,500	1,736663	71,43	180,00	≎,6**						1 00		7 69		35.22	0.00	5,64	4,95	-22,61	3 30		"15,13	15 534 17
S81op4C-ana	_2	इग₹	0 0001	Q 500	1 730000	71,43	180.00	0,87	1,4"	0,00	400	40,00	20,00	1 00	9.51	7 69	318,51	2.8C*,28	0,00	5 54	4.95	142,61	0 00	113 '4	892 95	24.803 3C
S83op01.cm	3	ราจ	0,0001		1,7748518	71,43	180 0C	<u>⊽</u> 87	1.4	0,00				0,33		7 63	54,21	99,41	0,00	5,7C	'5.10	8 66	000	2,''	423,40	2.003,15
Sti3op05.xm	3	5~4	0,0001		1,7748618	*1,43	180,00	್ರಕ್						0 33		7,63	86,38	84,82	0.00	5,*0	· 5.·C	64,35	500	10,54	437,44	2 7 6 2
503cp10 xm	<u> 3 i </u>	इ ⁻न	0,6001		1,7748618	1,43	180 00	0,57	-,4-	c,2c				0.33		7 63		306,58	0.00		-5,10]	67,89	2.00	21,28	457,37	J 35.56
Sti20015.xtm 1		STR	0,0001	6,333	1 7748618	*1 43	180 00	2 87	1.4"	C,00	4 30	15,00	20,20	050	10,99	7 63		490,01	0,00	5,70 5,70	5,10	75,52	200	33,54	468,43	5 3 9 59
Str2mp20_xts 1	3	5* R	0,0001		1,7748618	71,43	180 00	0 67	1,41	2,00	4.00			0,50		7,63		**5,*0	0.00	5,70	15,10	81,02	0,00	44.72	524,20	7 143.76
Sti*op30.ets 1	_3	STR	0,6001	9,333	1,7748610	71,43	180 00	0 67	141	0,00	4 00	30,00	20,30	1,00	10,99	7,63	242,55	1 660,29	000		15,1C	121,02	0.00	64,65	66 C	15 '41,4'
Sh1op40_sis 1	_3	STR	9,0001	0,333	1 7748818	71,43	. 90 00	0 67	1 41	0.00	4 00	40,00	20 00	.00	10.99		312,55	2 740 47	0,00	5 70	-5 ·C	141 02	9 00	113,14	868 31	24 981 57
50400C" at 8	-4 i	STIR	6,9001	0,264	1,2113628	71.43	180,00	0,67	1 41	0.00	4,00		20,00	C,25	11.82	7,57	52,02	100,57	0,00	5,76	15,2*	60.81	0.00	2,06	412,29	2.004.42
\$tr4op05_eta	<u> 4 i</u>	STIR :	0,0001	0,250	1,8119429	71,43	180,00	0.5	1,41	0.00	100	5,00		G,25		7,57	57,22	162,8C	000	5,76	15,27	62,61	0.00	10,31	425,75	2 691,27
S840p10_mp *	_4	STIR	8,0091	9,260	1,8118828	71.43	180.00	C,57	1,41	0.00	4,00	0,00		0,25	11.82	7.57		296,64	0,00	5,76	15,27	85 31	0.00	20,62	444,37	3 540,72
StiZop1< xte	•	STIE	0,0001	0,260	1.8116628	71,43	80.00	್ತ57	4	0.00	4,00	15,00	20 00	0,50	1 82)	7,57	108.7	460,68	0.00	5,78	15,27	75.31	0.00	33.54	475,70	5,238 23
\$112op20 xis	4	5 [™] 14	0,0001	9,260	1,8116628	71,43	80.00	3,87	1 7		4,00	20,00		0,50	1°,82j	7.57	120 77	697,42	0,00	5,78	15,21	60,3-	ÜŒ		5 0, 9 0	333.56
30 op 30 zia 1	_4	57:9	6,0001	0.260	1,8116626	71,43	180,00	3,67	1,41	0.00	4,90	30,00	20,00	1,00		7,57	240,77	1 540,49	0,00	5,78	15,27	120 3	0.00	84 ES	660,58	14 973 48
\$810p4C.48 1	4	5*2	6,8001	9,260	1,8115628	71,43	.80.00	9 67	- 4"	3,00	4 30	40,00	20 00	1 00	11,92	7 57	31077	271357	0,00	5.78	15 27	140 31	0.00	113 14	840 75	23 956 02
SMSopC* and 1	5	S R	0,0001	B.200	1,2390070	71,43	180,00	0 67	1,41	0,00	4.00	100	20,00	0.20	12,34	T 53	50.78	101 35	0,00	581	15.40	60,31	0,00	2 04	405.44	2,006,30
\$150p05_ds 1	5 :	5"R	0,0001	A,200	1,8386078	71,43	180,00	0.6~	1,41	c,36	4,00	500	20,00	0,20	12,34	7 53	54,78	181,80	2,20	5 81	15,40	61 9*	6,00	10.20	419 58	2 678.38
SH5op10_gm 1	5	5T-R	9,5001	6,200	1,8396078	71,43	180,00	C 67	1.41	5,00	4.00	10.00	20,00	0.20	12,34	~ 53	59.78	291 36	3,30	5 ê î	15.40	63.91	6.00	20,40	43"44	3 586,34
SHSop15.xm	_5 :	STR	8,0001	1,200	1,9396078	71,43	180,00	0,67	1 41	0,00	4,00	15,00	20,00	0,20	12,34	1.53	54,78	430 92	2,00	5 21	15.40	65.8	6.00	30 59	450 54	4 782,46
S850020 xtm	5	ST-R	0,0001	0,200	1,8396078	71,43	180 OC	0,57	1,41	2,00	4.00	20,00	20,30	0,20	12,34	7,53	59,78	600 48	=,∞	5 81	15.40	67,31	0,00	40,79	488.25	5 180,29
584op30.xip	_5	STIR	0,0001	0,200	1,2396071	71,43	180 00	0,87	1.41	0.00	4 OC	30,00	20,00	0,25	1234	7.53	127,28	0.50	3,36	5 81	15.40	74.91	6,00	61 85	564.44	10,086,00
Str3op40.xtm	5	STIR	0 0001	0,200	1.8396078	71,43	80.00	2,57	1.41	0 00	40 C	40,00	20 00	C 33	12.34	7 53	176 45	' 795 39	C 0C	5.81	15.40	86 Se	6.00	54 33	578.00	15 857 55

QUADRO A2 1 19 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STINR PARA VAZÃO Q = 25 m³/s

CORTE																Escev 1 e 21 R\$ / m²	Eacay de 1 cat. R1 m	Aterro R\$ / m²	Revest. Ri : m'	Jumlas R3 'm	Limpeta R\$ i m!	Ezpurgo R\$ ' m'	Reg_Prot_*al	Obres Compl.	Total
Arquivo	Secto	[m	۳ (к	Vazão (m2/s)	freeboard*	treeboard2	Pists Esq	Pusta Dir	Altura dos Cortes (m)	Ravest.	Talude Ext.	F (m) Otimizado	îı (fin) Otimizado	1 92	7,96	273	114.76	1,47	0 *0	1 65	1 07	**	
Sh4ooC1.xis 1_4	S"NR	0,0001	6.254	1,8115528	30.30	25,00	0.45	1.76	3.00	400			0,25		4,96	30 69	29,30	0,00	2.00	000	52,28	0.00	206	5,83	297,43
Sh4op05.xm 1 4	5"NR	6,000*	8,250	1,8116628	30,36	25.00	0.45	.08	0.00	4,00			0.25	* 75	4.98	43 24	83,07		5,50	0,00	57 30	0.00		15,81	857 35
Sti4op 7 xm 4	S" NP	1,0001	+,210	1 8116628	30,30	25,00	0.45	1,08	0.00	4,00	*0,00	20,00	0.25	7,79	4,95	49.49	17954	0,00	. 0,00	9,00	59 60	0,00	20,62	3*,04	1 583 25
SII2op15.xis 1_4	STINR	0,0001	4,250	1,8176628	30.30	25,00	0.45	.06	0,00	4,00	15 00	20,00	0.50	7.79	4 26	94 49	336 02	0.00	0,00	0,00	69,60	6,00	33,54	57,98	2 956 37
Sti2op20.xts 1_4	STINE	0,9001	0.250	1,8116628	30.30	25,00	0,45	1,05	0.00	4,30	20 00	20,00	0,50	7,78	4.98	-06,99	524 99	0,00	0,00	0,00	74,80	9,00	44,*2	67.55	4 528 50
Str1op30_xts 1_4	STINE	8,0001	0,250	1,8116529	30.36	25,00	0.45	1,06	0,00	4,00	30 00	20,00	1,00	7,78	498	226,99	1 412 95	0.00	0,00	0,00	114,80	5,50	64,95	235 "0	12 020,95
Sti1op40.xts 1_4	STINR	9 0001	0.250	1,0116528	30,39	25,00	0,45	1.06	0.00	4 20	40 00	20 00	1,00	7,78	496	296.99	2.430 90	000	000	3.00	134 86	5,00	113 '4	401 09	20 455 51
Stt5op01 x = 5	STIVE	0,0001 I	6,200	1,8396078	30,30	25,00	0,45	1,06	0,00	4,00	100	20,00	5,20	8 1 2	4,95	37,30	33 43	000	0,00	1,00	54,92	5,00	2,04	69.	352,35
\$15op05.xs 1_5	STING	0,0001	0,200	1,8386878	30.36	25 00	0.45	1.06	0,00	4,30	5,00	20,00	0,20	8 12	4 95	41,30	92,32	2,00	0.00	9.00	56,52	2,00	-::,2c	16.51	\$4 ⁷ ,36
S05op 0.xx _5	STING	8,0001	8,200	1,8390078	30,30	25.00	0,46	106	6,30	4,00	10 00	20,00	3,20	8,12	4 95	46,30	174,93	0,00	0.00	0.00	58,52	0.00	20.4C	30 18	.539,20
Str5op15 x = 5	STINE	8,5001	0,206	1,8386078	30,30	25,00	0,45	1,06	9,50	4,90	15 00	29.00	⊽,23		4.95	71,3C	287,54	30C	0.00	0.00	90,52	3,00	3C.59	49 29	2 513, 25
StiSop2C.xxx 5	STIME	8,0001		1,8396676	30,36	25 00	2,45	106	0,00	4,00	20,00				495	78,3C		0,00	0,00	0.00	62.52	0.00	4C "9	72.41	3 662.***
Sh4op3C rm 5	STINE	0,9001	0,200	1.8396078	30,30	25,00	0,45	1 06	3,30	4.00	30,00	20 00	0,25		4,95	113,8C		900	0,00	0.00	69,52	000	61.86	'40 02	* 14C.82
S130040 x s _ 5	STISE	0 0001	0,200	1.8396G*8	30 38	25 00	345	106	0.00	4 90	#0 ac	29 00	0 33	8 12	495	162 97	1 487 24	5 00	0.00	0.00	5' 19	C 00	94 33	244 96	12 494 71

QUADRO A2 1 20 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STINR PARA VAZÃO Q = 50 m²/s

CORTÉ																		Eucav 1 a 24 R\$ (m)	Escav de 3 cal. R\$ 'm'	Aterro Ri i m²	Revest. RS rm*	AHTEM R\$ / m	Limpeza R\$ 'm'	Expurgo R\$ / m²	Reg_Prot_Tal R8 / m²	Obras Compl. R\$	Total RS
Arqui	~	Seção	- : -	— J	ň	M _	ĸ:	Vazão	freeboard 1	freeDCard2	Pluta Eaq	Pista Dir	Alture dos	Revest.	Talude	F (m)	h (m)	1,92	7 94	2 73	114 76	1,47	0 10	- 66	1 07	J	ļ
								on3/e)	(m)	(PTG)	(ETC)	(m)	Cortex (m)	(cm)	Ext	Otivazindo	Ottmizado										
St:40pQ1 xis	1.4	STINE		5,0061	9,250	1,8116628	16,30	50 00	0.48	1,11	5,00	4,0G	1,00	20.00	0,25	10,08	6,46	36,46	54,18	0.90	0.00	0,00	54,58	2,00	2,08	10,18	51913
Sh4op05 x4s	4	STINE		9,0061	0,260	1,8116628	30,30	50,00	0.46	111	0.00	4,00	5,00	20.00	0,25	16,08	640	50,92	135,29	0,00	C 00	0,00	60.3"	2,20	1031	23,84	215,59
Sh4op10.rm		STINS		0,0001	0.254	1,811528	30,39	50,00 į	0,45		_000	4.00	•0.00	20,00	C,25	10 DE	6,46	57,47	237 13	2,00	3.00	5,50	92 8	0,00	20 62	40.51	2 268
\$1120p15.xm	1_4_	STINE		0,0001	9.286	1,8116528	30,39	50,00	0,48		0.00	4,00	*5,00	20,00	0,50	10.08	5,46	102,17	406 97	3,30	0,00	0,00	72.8*	0,00	33 54	69.89	3 564 6
Sti2on20.xts	1_4	57.75		0,0001	9,259	1.8116628	30.36	50,20	3,48	1.	a,cc)	4.00	20,00	20,00	2,50	10.08	6,46	1145	513.30	0,00	sx	0,00			44.72	*c3 *5	5 290 <i>8</i> 5
Set op 30 x is	Ī	5-14	_	.0001	9,260	1,2115528	30,30	50,00 j	0,48	1,11	5,00	4,00	30,00	20,00	1,00	80	6,45	234,67	1 531,98	0,00	0,00	0.00	1.7,87	000	84,95	254,95	13 DC2 63
Salop40 xis	4.4	5" NA		1,000	0,260	1,8116428	30 30	50,00	0.48	1 11	0.00	4,00	40.00	20,00	1 00	1C 08	6 45	304 67	2.580,65	0.00	0.00	0.00	137,87	3.00	113 14	425,24	21 687,02
\$150pO1 >1s	. 3	ST'NR		9,0801	9,700	1,8380078	38,30	50,00	0.48	1,11	0,00	4,00	1,00	20,00	0,20	10,53	6 42	44,85	63,50	0.00	0.00	0.00	57,94	3,00	2,34	11,39	R11,56
S85cp06.xx	·_5	STINE		9,0001	0,200	1,8390078	30,34	50,00	0.46	1,11	_0.00	4.00	5,00	20 CO	0,20	10,53	6,42	48,85	134,46	5,00	G.00	2,00	59.54	3,00 3,00	10 20	23,62	204.57
StiSoo* C.xm	1_5	STINE		9,0001	0.200	1,8396078	30.30	50,00	0,48		0 00	4.00		20.00	0,20	10.53	5,42		232.15	0,00	0,00	0,00	61,54		20.40	39 59	2 016 SC
5650p15.xu	1_5	5*44		1,0001	6,206	1.6399676	36.36	50 00	2,48		0,00 (4,00	15,00	20,00	c,x	rG 53	8,42	76,65	356 65	5,00	2,00	5,30	53.54	0,00	_30 59	61 10	3 15 9
StrSop20 xis	1_5_	S* 44		,0001	9,200	1,2366976	30,30	50,00	0,48	1,11	5,50	4,00	20,06	20,30	5,20	10.53	6,42	63,65	517,54	0,00	2,00	ą.x	95,54	0.30	4C,79	96.62	4 4*7 44
Sh4op30.xis		5* N9	_	0,0001	4,200	1,8396678	30,30	50,00	0.48	1 11	2.00	4,00	30,00	20,00	0 25	10,53	6.42	121 35	900,43	0.00	0,00	0.00	72.54	0.00	81,85	- 59 03	8.110.50
Sh3op4C x to	. 5	STINE		9 900 1	0,200	1 2396072	30 30	5C OC	0.48		_000	4.00	4000	20.00	0 33	10 53	6.42	951	1 534 99	0.00	0.00	0 00	64 2*	_ ≎ 00	54 33	258 91	13 739 37

QUADRO A2 1 21 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STINR PARA VAZÃO Q = 85 m³/s

CORTE																	Escay 1 e 2ª R\$ / m²	Escav de 3 Cat, R\$ / m²	Aterro R\$ 'm'	Revest. R\$ 'm'	Juntas R\$: m	Limpeza R\$ m*	Expurgo R\$/m*	Reg Prot.Tal R\$ / m²	Obras Compi R3	₹otal R\$
Arquiyo	-	Seção	1	n	>	K	Vazão em3/s)	freeboard1	f-seboard2	Pusta Esq	Pista Dir	Altura dos Cortes imi	Revest.	Tande Ext.	F (m) Otomkado	h (m) Ottmaredo	1,92	7.96	2 73	114 78	1,47	0 10	1 58	107		
Sh4op01 x40	4 :	\$" NR	9,9001	0,250	1,8115528	30,30		353	. 19	0.00	4,00		20 00	3,25		7,68	42,01	86,13	0,00	0.00	0.00	56 8C	5.50	2,08	15.48	759 51
5b4op05.cu 1	4 .	STINE	0,0001	0,250	1.8116628	30,30	85,00	0.53		0 00	4,00	. 500	20 00	2,25	12.3C	7 68	58,35	34.24	5.5c	0.00	9,00	53,34	5,00	10,31	31 92	1 62" 88
\$840010.06 1	4	5" NP	0,9001	0,250	1,8115628	30,30	85,00	0.53		0.00	4,90	10,00	20,00	: 25	12,30	7,68	64,50	300.93	2,00	0.00	0,00	65.84	2,00	20,52	50 96	2 589.0€
Sti200*5 xts 1	4	S"NR	0,0001	0,260	1,2116528	30,30	85,00	0.53	9	0.00	4,00	15,00	20 00	0,50	12.30	7 68	109,60	487.63	5,50	0,00	9,00	75,84	5,00	33 54	52.**	4 218 13
3820020 xis 1	4	S" NR	0,0001	0,260	1,8115628	30.30	85,00	2,53	. 19	0.00	4,00	20,00	20 00	0,50	12,30	7,88	122,10	705,82	2,00	0.00	6,00	80,84	200	4,72		6 034.95
Stillos30.xls 1	ــالــــــــــــــــــــــــــــــــــ	S" NR	0,0001	0,260	1,8119828	30,30	85,00	2,53	1,18		4,00	30,00	20 00	1,00	12,36	7 88	242,10	* \$56,20	8,00	0.00	0,00	129,84	0,00	84.85 39.44	2*4,56	14 017 95
\$11 op 40 x/s 1	4 [S" NR	0.6001	0.240	1,8115626	30.30	85.00	0,53	1.'9	0,00	4,00	40,00	20.00	1,00	12.30	7 88	312,10	2 733,58	0.00	000	300	14G 84	0.00	113 14	449.87	22 943 55
StaSopO1 xis 1	_5	STINR	6.6001	0.290	1,8306071	30,30	85,00	5,53	1,19	0,00	4,00	1,00	20,00	0,20	12,84	™ 83	52,14	130,71	0,00	0.00	5,90	6C,55	0.00	2,04	15,20	928,24
StSop05.xls 1	5	5T·NR	9.0001	0,200	1,8390078	36,36	85.00	0,53		C,20	4,00	5,00	20,00	0,20	12,84	7,83	56 14	183,33	0,00	9.00	3,00	67,45	0,00	10 20	31,58	615.01
StiSup1C,x16	_5	STINR	6,6001	9.294	1,8396076	36,30	85,00	0,53	1,19	0,00 j	4,00	·c,30	20,00	35	12,84	.83 ***	61 14	295,80	0,00	2,00	0,00	64,45	0.00	20 40	49,37	2 546 58
StiSop15.xts	5	STINR	9,6601	6,200		34,30	85,0C	0,53		2,20	4,00	15,00	20,00	0.20	2.54	7,83			0.00	3,30	\$.0C	66,45	0,00	30 59	73,90	3 "64 OC
SH5op2C.xm	_5	STINE	U,0901			30,30		0.53	ı iğ	5,30	4,00			0.20		*,53		8 0,14		2,00	n,00	62.45	0.00	40.79	101,84	5 - 53 62
3840p30.xtu	.5	STINR	D,0461	0,200		30,30		0,53	1 19	0,00	4,00			0.25		7,93		1 002,18	0.00		0,00	75,45	0.00	5° 85	178,70	9 ** 3 54
9830p46 xis		STINE	0 0001	e 200	1.8386078	30 34	BS 00	0 53	1 19	0.00	4 00	40 00	20 ac	0 33	12 84	7,83	177 8C	1 785 89	0.00	3,00	O DC	87,12	0.00	54 33	293 2	14 949 05

QUADRO A2 1 22 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STINR PARA VAZÃO Q = 150 m²/s

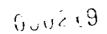
CORTE																	Escav 1" u 2" R\$ ·m'	Escav de 3 car. R\$/m²	Alerro R\$/m²	Revest. R\$ (m²	Juntas R\$ 'm	Limpeza R3 / m²	Expurgo R\$ m	Reg.Proc.Tai	Obras Compl. RS	"otal R\$
Arquevo	Ţ	Seção		Э	M	K	Vazáo	freeboard 1	freeboant2	Pista Esq	Plata Der	Atturn dos	Revest.	Taside	F (m)	p dad	1,92	7,94	2.73	114,76	1.47	0 10	1 56	1 07	į	
						<u> </u>	(m3/x)		(m)	[PP]		Cortes (m)	(011)	Ext.	Otemikada	Onmizedo										
S54opO1.xls	4	STAR	9,0801	0,260	1,8118428	30,30	150 00	3,63	1,34	0,50 (4,001	1,00]	20 00	2,25	15.22 (a,75 (49 31 [136,99	[c,00[3,00 (0.00[56,72	2,30	306	24,18	1 233,43
St4op05.xla		STINE	8,8601	0,250	1.8116528	30,30	50 00	0.63	1 34	0,00	4,00	5,00	20,00	0.25	15,22	9,75	68 17	26' 50	2,00	2,00	0.00	67,27	2,00	10 31	44,5C	2 274.
S84op1C.xls 1		STIVE	0,9001	9,250	1,3119829	30,30	: 150,00	0.63	1,34	0.00	4,00	10,00	20 00	2,25	15,22	9,75	74.42	397,84	5,00]	0,00	0.00	66,7	5,30	20,60	66,75	3 405,53
StiZop15.rs 1	<u> </u>	STINE	0,9601	0,210	1,8116628	30,30	50.00	0,63	1.34	000	4,00	*5,00	20 00	0,50	15,22	9,75	19 42			6,20	000	79,77	0,00	33.54	101 65	5 184, 4
\$820p20.cs 1	• I	STINR	8,0001	9,284	1,8116828	36,30	50,00	0.63	ĸ	00	4,00	20,00	20.00	0,50	*5,22	9,75	131 92	<u>84</u> 3 03	5,00	0.00	0 00	54,77	3 30	4.72	140,40	160,5
S81 op3C x16	<u> </u>	STINR	0,9661	9,214	1,8116628	30.39	150,00	0,63	.34	COO	4,00	30,00	20,00	1 30	15,22	9.75	251,92	830.72	500	0,00	0 00	24,77	0,00	84.85	303,19	15 462
Strop46 xts 1	.4	ST'NR	8.0001	0,260	1,3115628	30 30	150 DC	0,63	134	<u> </u>	4,00	40.00	20,00	1 00	15,22	9 75	321,92	2 948,41	0.00	6.00	0 00	*44 77	0.00	**314	454 46	24 "0" 46
SdSopO1 xis	5	5" NR	0.0081	0,260	1.8396078	30,30	150,00	9,63	1,34	9,00	4,00	100	20,00	0 20	15, 86 į	2 69		52.45	0.00	0,00	0,00	54.71	0.00	2.04	28 4	1 440,73
SaSopO5_ris	٠I	STAR	8,8991	8,200	1,23960*6	30,30	150 00	C,53	1,34	Ø,00	4,00	5,00	20,26	0.20	15.80	9.69	65,77	283,47	0,00	0.00	≥,00	36,31	0.00	*3,20	44.34	2 261 54
S::50p10.xls	5	5TINR	9.9401	0.200	1,939e07E	30,30	50 00	0,83	.34	2,00	4 00	10.00	20,00	0,20	15.89	9,69	70,77	302.01	0.00	0.00	2,00	65.31	0.00	20,40	55 70	3 350 tt2
StiSop15.xx	5	STINR	9,1001	0,200	1,8399078	30,30	50.00	0,63	134	0,50	4 00	15,00	20,00	0,20	15,89	9,59	95,77	553,54	0,00	0.00	2,00	70.31	0.00	30,50	92.60	4 722.44
Stt5op20.xx 1	5 :	STING	8,9501	6,200	1,8396078	36.30	50,00	0.63	1 34	0.00	4,00	20,00	20,00	2,2C	15,89	9,59	100,77	45,28	0,00	900	3,00	72.31	0.00	40,19	23 50	5 296 6T
Sti4os30 xts 1	5	STINR	8 0001	0,200	1,0306078	34,30	5C,00	063	134	0.00	4,00	30,00	20 00	0,25	15,99	8,89	136,27	1 255,55	0.00	000	5,50	23,31	0.00	6.95	206 69	12 541 .21
\$93op40.xts 1	5 T	STINE	0 0001	0,290	1,8396078	30,30	15C 3G	0.63	-34	000	4,00	4C 00	20 00	5 33	'5 59	S-86	8" 43	1 99" 88	5.00	300	9.00	90,97	3.90	64 33	32*25	16 689 58

QUADRO A2 1 23 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STINR PARA VAZÃO Q = 165 m³/s

CORTE															ĺ	Escay 1 e 2º	Escav de 3 cet. R\$ / m²	Aterro R\$ / m*	Reyest. R\$ / m²	Juntes R\$ / m	Limpeza R\$ 'm*	Expurgo R1/m²	Reg_Prot_Tal	Obras Compl.	Total Re
Arquivo	Seção	'	m	M ;	к	Vezão fm3:e)	Presboard 1	freeboard2 (m)	Plata Ééq (m)	Posta Dir (m)	Altura dos Cortes (m)	Revest.	Talude Ext.	F (m) Otimazado	h (m) Otimizado	1,92	7,94	273	114 75	1,47	0 14	1.56	10"	κ.	"
Str4op01 xis4	5"ND	0,9901	0,250	1,81*8528	30,30	165 00	0,65	1,38	0.00	4,00	. 1,00	20,00	0,25	15,78	10 10	50 70	150,53	0,00	0.00	0.00	60 26	0.00	2,05	25 05	_*.329 90
S64op05.x's 4	STINE	0,9601	9_250	1,8116520	30,30	165,00	0 this	1,38	0,00	4,00	5.00	20,00	0,25	15,79	10,10	70.05	277.98	5,00	3 00	0.00	68,07	9,90	12,31	47,30	241231
Sti4op*C.xts 1_4	STINE	0,0001	0.250	1.8116528	30,30	. 92,00	0.65	1 38	0,90	4,00	10,00		0.25	15,75	-3.40	79,30	419.08	0.00	3,00	0 00	70.52	0.00	20,62	70,0	3535
St2op*5.xte 1.4	ŞTINR	0.0001	0,250	1,6115528	30,34	95,00	9,65	1,38	0,00	4,00	<u>15</u> 00	20,00	0,50	15,78	10,10	-21,3C	628,18	0.00	0,00	0.00	50,52	2,00	33 54	106,54	5 382.66
St2pp20 xts 4	STNR	9,0001	9,260	1,2115522	20,30	*55,00	3,65	- 36	0,00	4,00	20 00	20.00	0,50	15,78	10,10	133,80	870,78	000	5,00	0,00	55,5 2	3,00	44,72	144,89	7 389 62
Sb1op30 xia 4	5 [±] NQ	8,9001	0,260	1,8116528	30,30	165,00	€,65	36	0,00	4 00	30.00	20.00	1,00	15 78	10,10	253,90	1 865,99	0.00	0,00	0,00	125,57	3,00	64.65	306,68	15 752 **
Strap40 x/s 4	STINE	9,8061	2,280	1,8118828	30,36	185.0C	285	36	980	400	40,00	20 00	00	578	10 10	323 80	2,991 19	0.00	0.00	0,96	145 52	000	113 14	491,34	25.058 53
Sh5op0' are _5	STINE	8,6001	8,200	1,83980"g	39,30	165.00	0.65	1,38	0,00	4,00	1.00	20.00	0,20	18.47	10,05	63 61	175.96	0,00	0.00	0,00	65,44	0.00	204	30 63	1 562,10
\$850a05.xm 1_5	STINR	0,9001	0,200	1,8386078	36,30	165,00	0.065	1,38	0,00	4,00	5,00	20,00	0,20	15 47	10,05	67,61	276 93	6,00		6,00	67 04	0,00	10.20	4*04	2 394,79
Se5oc 3 xis 6	STNR	0,0001	0,200	1,8396079	39,30	155,00	0.65	1,38	5.00	4,00	10,00	20,00	0,20	16,47	10,06	72.61	412 14	2,00	000	0.00	5904	0,00	20,40	56.96	3 517,73
Sn5op15 xis . 5	ST NR	8.0001	6.200	1,8396074	30,30	55,00	3.65	36	2,06	4,00	5,00	20.00	0,20	16,4	10,05	97.61	57 35	0.00		900	71 04	0.00	30,59	26 46	4919,41
StrSep20.xts	\$~n?	£,8001	e,200	1,6396079	30,39	95,00	0,56	38	5,30	4,00	20,00	20,00	0.72	16,47	10,06	122,61	772,56	200	0,00	9.00	73.04	9,90	4C,79	21,95	5 525 49
S640030.xs 5	STINR	0,000	0 200	1,2394071	30,36	165 DC	0.65	- 36	0.00	4 00	30 00	20 00	0,25	6 47	10.05	140,11	290,48	0.00	5,50	0.00	\$G,34	0,00	61.85	2.53	C 827.74
503004C x465	STIVE	9 8001	0,200	1.8386078	30 30 :	165 OC	065	.38	0.00	4 00	4000	20 00	C 33	.94.	10.05	189 27	2 340 07	0 00	coc[;00	9-,7-	0.00	84 33	334 04	7 035 82

QUADRO A2 1 24 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STINR PARA VAZÃO Q = 180 m³/s

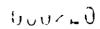
CORTE				_												Escav 1 e 2° R\$ 'm'	Escav de 3º cat. R\$ / m²	Aterro R3 i m²	Ravoul. RS · m²	Juntas R\$ / m	Limpeza R\$∫m²	Expurgo	Reg Prot.Tal	Obras Compi RS	Total R\$
Arquivo	Seção		m	м	×	Vazão (m²s)	freeboard?	freeboard2	Plata Esq.	Pistu Dir	Altura dos Cortes imi	Revest.	Talude Ext.	F (rri) Ottorizado	h (m) Otimizado	1,82	7.00	273	*14.75	1.47	a 10	1.55	1.07	·	. [
Sh4opC x* 4	8* N₹	0,000	£ 250	1.81*5628	30.30	180 OC	0,67		0.00	4 90	1,00	20,00	0.25	18,30	10 44	52,00	16- 7-	9.00	9.00	0.00	60,60	6.00	20€	2",3"	423.27
Sh4op05.xm 4	STINE	0.0001	0,250	1,8115528	30,30	180 00	0,67	1,41	0 00	4,00	5.00	20,00	0 25	16,30	10,44	~1.82	292,83	0.00	0,00	0,00	66,73	0.00	10 31	49.59	2.544,58
\$840p10.xis 1 4	5 144	₹ 00£1	0,250	1,2116528	30,30	190,00	್ರಿಕ್	1,41		4,00	10 0		0,25	16.3C	10,44	78 07	437.40	0.00	0.00	2,90	71,23	0,00	20 62	73,23	3 ~34,50
Sc2op15.xls 1.4	STINE	1.0001	0,260	1,8116528	30,30	190,00	06*	1 41	5,00	4,00	*5.0t	20 00	9.50	16 3C	1C,44	123 00	#\$1.10	0,00	0.00	5,00	81 23	0.00	33.54	09,25	5 572,28
St:Zop20_shs 4	STING	5,0601	4.250	1,8116626	36,30	180,00	0.67	1.41	5,00	4,00	2C.X		1.50	16 30	10,44	135 57	897,23	2,00	0,00	0,30	e6,23		44,72	149,17	7 607 SE
Shiop3Cate 4	8T NR	8,9061	0,250	1,8116628	30,39	160,00	0,57	1.41	6,00	4,00	3C_00		.00	15,30	-5.44	255,57		3,00	0,90	9,30	126.23	0,00	94,95	314,29	6 028 32
581 6p40 x10 4	S* NR	0 9061	a 230	1.2116628	30.34	180,00	0 97	41	0.00	4 00	40,00	20:00	1 00	15,30	10 44	325 5	3 031,75	0,00	3.90	0.00	46,23	0,00	13 4	457 97	25 391,36
Str5op01.xts _5	\$TINE	8,9001	8,200	1,8396078	38,36	180.00	0,67	. 4	0.00	4,00	1,00	26,00	0,20	17,02	10.38	65,33	189,03	5,00	0,00	0,00	95.3	3,00	2,04	32,78	671.70
SE50p05.xis 1.5	STI%R	6,0001	0,200	1,8396978	39,30	190.06		1,41	0.00	4,00	5 00		0,20		10,38	89,33				0.00	57,73	5,00	10,20	49,62	2 530 65
\$t/5op*0.xls 1_5	STINE	6.0001	0.200	1,8398078	30,30	150,00		141	0,00	4,00	9.00		0.20		10,38	74.33					69,73	0,00	20,40	72,11	3 5™ 8€
S1500 5.2% £	STAR	7,0001	0_200	1,8300078	30,30	*8C,00		1,41	2,00	4,50	·5 o				·c,38	99 33		0.00		0,00	71,73	3,00	30,56	130,150	5 107 61
Str5op2Cxm 5	S" NR	0,0001	0.200	1,8396078	30,30	180,00	0.67	1 41	9,30	4,00	20,00		0,20		15,36	104,33	796.71	9,00		00,3	73,73	0,00	40 %	132,19	9 741 78
504op30 xm5	S"N9	7,000,0	9,200	1.9398078	38,30	180,0C	C,97	- 141	0.00	4.00	30,00		≎,26		10 38	141,83	1 323 61	2,00	0.00	0,00	60.73	0.00		217.65	11 100 18
S:30040.xls 1_5	STINR	8 0001	0,200	1,8396078	30 30	180.00	3 6 7	. 41	0.00	4 00	40 00	20 00	2,33	17,02	10 35	191 36	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 ac	0.00	9,00	92 40	0.00	94 33	340 46	17 354 41


QUADRO A2 1 25 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STIFR PARA VAZÃO Q = 25 m³/s

CORTE																Escav 1 a 2* R\$ / m²	Escay me 3 cat. R\$:-m²	Aterro R3 'm'	Revest. R\$ / m²	Jumtes R\$ 'm	Lampeza R\$ 1 m²	Expurso R1 nr	Reg Prot_Tal RS · π⁴	Obras Compl - RS	™ofal RS
Arquivo	Secto		3	۳.	K	Vazão	freeboard1	freeboard2	Pusta Enq	Pleta Dir	ARura (104 Cortes (119	Revest.	*alude	F (m) Otomstello	p (m)	1 82	7,94	2 73	114 76	1,47	e 10	1.55	1 07		
C	S*IFR		4333		47.00	25.00	345	yrsy .	200	- 914	-	100.0	Ert.		Offenigando	35.86	21.41	5.00	- :		54.35	100		7 85	420.45
Sh3op01 xm 3		0,0001		1,7748618				.08	300	400			0,33		4.26				1,23	1,25		0,00	4		400 41
503op05.xh _3	STIFE	0,0001	0,333	1,7748518	47,00	25,00	3.45	1,08	0,00	4,00	500	20 00	0 33	614	4 26	42 53	17,46	000	1,23	3.25	57.C1	000	- ≎54	· · <u>· 2</u> :	878,03
Str30p*0.rs 3	STIFF	0,000	0,333	1,7748618	47,00	25,00	345	.90	0.00	4.00	10,00	20.00	0,33	614	4.26	50 86	152 52	9.00	1 23	3,25	50.3 6	0.00	21,00	31,31	595,64
\$220p15.cb 3	STER	0,0001	0.333	1,7748518	47,00	25,00	3 45	1,08	0,00	400	15,00	20,00	9.5C	5,14	4 26	סידיפ	309.25	3,00	1,23	3,25	58,68	000	33 54	58,52	2 982,59
S120p20.xh 1_2	STER	0,0001	0,333	1,7748518 ,	47,00	25,00	3.45	1,36	0 00	4,00	20,00	20,00	0.5C	5,14	4.26	04.20	492,65	3 00	1.23	3,25	ت. 58. ت	0.00	44,72	86,45	4 405,82
St:1093C.xts 1_3	\$ FR	9,9901	0,333	1,7748\$18	47,00	25,00	ે,45 [1,38	0.00	4,00	36,00	20,00	1,00	8,14	4.26	224,20	1 359,44	2 00	1,23	3 25	113,68	0.00	84.85	231,58	11,910,56
St10940 xts 1_3	STFR	8 9901	0.333	1 7748518	47 90	25 20	3.45	1 36	0,00	_400	40,00	20,00	·,oc	6 '4	4.26	294,20	2 3 6,24	3 00	1,23	3.25	133 58	9.00	113,14	395 19	
SU50001 xs 1_5	\$1:FR	9,8901	8,200	1,8396978	48,63	25,00	0,45	1,05	0,30	4,30	1,00	2C,00	5,25	6,50	4,15	33,22	22,06	3,90	1.36	3 60	53,28	300	2.04	5 1 5	416 23
SHSopO5 x s 5	STIFR	0.0001	6,200	1,8390078	44,63	25.00	0,45	1 06	0,00	4,00	5,00	20,00	2,26			31,20	*4,3*	2.00	1 36	3,60	54,86	2,00 2,00	10.20	15 82	657 93
Str50p10 xs 5	STIFR	0,0001	9,200	1,8396978	48.83	25,00	0,45	1,05	0,00	4,00	10,00	20,00	0,20	6,80	4,15	42,2C	148,77	5,50	.36	3,60	56,88	2,00	20 40	29 00	483.13
5050p15 xm 5	STIFE	9,0001	0,200	1,8396076	49,63	2500		06	c,ocj	4,00	15 00	20,00	0,20	6,6C	4,15	67,20	253,17	3.30	1,36	3,60	56,66	2,00	30,59	45 58	2 391,C"
Str5002C xts 5	STIFR	8,0001	9,200	1,8386078	44.43	2500	0.45	- 06	0,00	4.00	20,00	20.00	0,20	6 BC	4,15	72,20	367,57	5,30	16	3,80	60,86	0,00	40,79	58,69	1 503,40
S940ts30 xin _5	STIFR	8,9091	9,200	1,9300078	48,63	25.00	0.45	.08	6,00	4,00	30 00	20 00	0.25	5.6C	4,15	109,70	"83 87	6,20	. 36	3,90	67,66	630	51,55	33,66	6 818,20
5*3004C.clu 5	STER	0 0001	9 290	1,9396078	48.61	25 00	945	.06	9.00	4 00	40 00	20 00	0 33	680	4 15	158 67	1 411 84	600	36	3 90	7955	0.00	54 33	236 06	12 038 61

QUADRO A2 1 26 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STIFR PARA VAZÃO Q = 50 m³/s

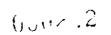
CORTE																Escay 1 e 2º R\$ / m²	Escav de 3 cat. R\$ 'm'	Aterro RS · m²	Revest. R3 'm'	Juntas R\$ ' m	Limpeza R\$ / m*	Expurge R\$ / m²	Reg Prot.Tal	Obras Compl RS	Total R‡
Arguivo	Şeçâc			*	К	Vazão	hyeboard1	freetocard2	Prote Eeq.	Pista Dir	Altura dos Cortes (mi	Revest.	Talude	F (m)	h (m) Ottmizado	1,82	7,96	2.73	114 75	1,47	8 10	- 56	1,07		1
S*-3op01 xta	STER	0,0001	0,333	1,7748618 ;	47,00	50,00 j	0 45	111	0,00	4 00			0,33		5.81	44.67	5C 81	0.00	170	4.52	£7 87	0.00	2	*4-01	714 38
St/3op05 xis 1_3	S FR	. 0.0004		1,7749619	47,00	50:00	0,48	111	0.00	4,00	5,00		333		5.9	51,33	120,94	0.00	1 0	4,52	80 53	0.00	10,54	25,5*	1 306 32
St/3op10.xls 1 3	S* FR	0.9961	0.333	1,7748618	47,00	50,0C	C.45	117	0.00	4,90	.0'00		0 33		5,91				1,70	4.52	63,87	0.00	2',38	42.51	2 68.02
Sti2op15.x% 1_3	ST-FR	4,0001	4,333	1,7748518	47,00	50.00	C,48	1,11	000	4,00	*5,00	20,00	0.50	6,52	5,91	100,50			1,10	4 52	*2,20	300	33,54	70,52	3 596 69
5020020 x 3	5*IFR	9,0001	6,333	1,7748518	47,00	50 00	3,49	1.11	0.00	4,00	26,00	20,00	0,50	8,52	5 91		566 93	0,00	***	4.52	77,20	0.90	44,72	103,25	5,265,82
Stiron3Cxrs 3	STIFE	8,8601	0.333	_1,7748518	47,60	50.00	0.48		0,00	4,00	30.00	20,00	00	852	5.91	233,00	1 500 92	2,00		4 52	7,20	0,00	54 85	253,99	12 953,31
Sti* op40 xin3	51155	8 0061	6,233	7748518 ;	47 DO	50 00	0.46	1,11	C 30	4 00	40 00	20,00	. 00	5 52	5 91	303 00	254292	9 30	- 70	4.52	31,20	3 30	*13.14	423.21	21 583 54
Str5op01 xls 1_5	STEE	6,8041	0,790	1,8396978	49,63	50,00	0.48		5,30	4 00	1,00	20,00	0,20	9.44	5,76	41.4"	51 08	0.00	1 89	5,00	58,56	0.00	204	14.36	732,25
Stt5op05.xis 1_5	ST FR	0,0001		1,8396078	48,83	50,00	0.45	1,11	0,00	4 00	5,01	20 OC	2 20	3.44	5,75	45.47	**8.61	0.00	1.89	5,00	58,19	0.00	10.20	25 12	1 281 32
StiSop10.xls 5	<- FB	8 0001	0,200	1,830607#	44.63		G,48	1,11	0.00	4,00	10,95	20,00	3 20	9,44	5,75	50,47	257 54	000	1 89	5,00	60,19	0.00	20,40	40 01	2 04C T3
Sd5og15.x=s 1.5	STIFR	9.0001	0.200	1,2196078	48,63	50.00	C,48	111	0,00	4,00	15,00	22.00	0,20	8,94	5,76	3,4	326,47	^00	1.59	5 OC	62 19	0.00	3C 59	6C.45	3 082 55
Str5op2C.x+s 5	STIFE	6,8801		1,6366078	48,63	50,00	0,48		0.00	4,30	20,00		0.20	944	5_76	6C,47		0.00	1,89	5,0C	64 19	0.00	40,79	84,99	4 325,45
\$54op30.xis 5	STIFR	0.0001		1,9399078	48,63	50,00	0.48	. 11	9,00	4,00			0,25	944	5.76	117,9*	906.75		1,59	5 00	71 19	3,00	61 65	155,15	912,56
Str3op40.xls 1_5	ST FR	0 0061	B,200	1,8396078	40 63	50.00	0.48	' 11	2 00	4 00	40.00	20 00	0,33	944	5 76	167 13	1 569 79	00.3	. 68	500	52 95	0.00	54 33	272 78	'3 401 TO



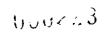
QUADRO A2 1 27 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STIFR PARA VAZÃO Q = 85 m³/s

CORTE																Escav 1 + 2* R\$ 'm²	Escary de 3 cat R\$/m²	Aterro R3 'm'	Revest. R\$ / m*	Juntas R\$ ' m	Limpeza R\$ / m²	Expurgo R\$ · m'	Reg.Prot."al	Obras Compl R\$	™ofæl R\$
Arquivo	Seção	į.		Τ ω-	×	Vação (m/a)	freeboard1 (m)	freeboard2 fmi	Plata Eeq	Piala Dir (im)	Altura dos Cortes prej	Revest.	Talude Ext.	F (m) Otimizado	h (m) Otenizado	1.92	7.96	2,73	114 75	1,47	e 16	166	1 97		
303op01.x's 1_3	S" FR	6,0061	0,333	1,7748618	47.00	65,00	953;	1 19	0.00	400	-,00	20,00	0,3	9.74	6,73	40,14	65 99	2,30	1.94	5,15	59 86	0.00	٤٠١	17 8C	207,55
\$800p05.es 1_3	5+ LO	2,0001	0,333	1,7748618	47,00	85,00	0 53		0.00	4,00	5,00	20,00	G.33	9,71	6.3	55,61	'47 3S	3,30	. 24	5 15	52,32	2.00	10,54	3G_55	55 99
St(3op10.rs 1_3	S*FR	0,9861	0.333	1,7748618	47,00	85,00	. C.53	19	0,00	4.0C	.0'00		0,33	9,71	6.23	54,14	258 91	2,00	. 94	5 15	55,65	0.00	21 08	48.57	2 492 45
\$12op 5.cm 2	ST-FR	0,0061	6,233	1,7749618	47,00	85,00	2,53	9	0,90	4,00	15,00	20 00	C,50	9,71	5 73	104,98	432,20	5,00	94	5 15	73,99	200	33 54	7e 3°	3 993 84
9d2op20 xts 3	5T·FR	0,0001	0.333	1,7748618	47,08	35 00	0,53	- 6	0.00	4,00	20,00	20 00	0,50	9,71	6.73	117,48	542,16	0.00	',94	5 15	78,99	0.00	44.72	112.46	5 735 71
Su op30 xia	STIFR	8,0001	0,333	1,7748518	47,00	¥5 00	2,53	19	0,00	4,00	30,00	20 00	1,00	9.71	5.73	237,48	572,07	0.00		5.15	118.99	000	94 85	266_36	13 568 5
St ap40 xia 3	STIFE	5 0001	0 333	1 7748618	47,00	\$5.00	0.53	- 19	2,00	4 00	40,00	20.00	1,00	971	9,73	307.46	2 831 98	0.00	194	5 * 5	136 96	0.00	1'314	436 13	22 344 39
Stroop01 xts 5	STIFR	0,0001	0,200	1,83940"8	46 63	85.00	0.53	1,19	2,30	4,00	1,00	20,00	0,2	1076,	6,56	45 54	66,95	0.00	2 15	5,70	58 26	0.00	2 04	18 15	925.81
Stroop05.xis 5	57150	0,0001	9,200	1,8399078	49,83	85,00	0.53	1,19	3,30	4,00	500	20,00	0,20	0.76	6,56	60.64	142.17	0.00	2 15	5,70	59.86	0,00	10,20	Z9 98	525.13
Stifop 0 ras 1_5	STFR	9,0801	9,204	1,8386078	48,63	NS 00	0.53	1 19	0,00	4 00	10,00	26.00	0.20	0.76	6,56	54.84	241 46	0,96	2.15	5,70	61,86	3,20,	20,40	46.20	2.356,35
\$05op*5.x:s 1_0	5* FR	8,005*	8,204	1,83969.1	48,63	35,00	9,53	1.19	0.00	4.00	15.00	20 00	0.20	و: ن	6.56	79,64	3*0 *4	2,00	2,15	5.70	63,56	5,00	30 59	57,97	3 466 32
S05op2C x 8 1 5	ST:FR	9,0001	0,200	1,8396878	44,63	_85,00	0,53	1,19	0.00	4 OC	20,00	20,00	0,20	13,78	6 56	94,84	530 C2	3,30	2.15	5,70	95,86	0,00	40,79	93, 4	4 796 7.
\$24op30.xia 1_5	STIFR	0 0001	0,206	1,8396678	48,63	86,00	2,53		0.00	4.0C	30,00	20 00	0,25	12,76	6 56	122,14	976 09	2,20	2.5	5 70	72,86	0.00	51 85	186.96	8 499 53
S*3op40 xia £	STIFR	0 0001	0.206	1 8386678	48 63	85,00	2.53	•	a ac	450	4C 00	20 00	3,33	1076	5 56	1"1 31	953 82	5 30	2 15	5 70	84 52	0.00	54 33	77 6 94	14 124 19

QUADRO A2 1 28 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STIFR PARA VAZÃO Q = 150 m³/s

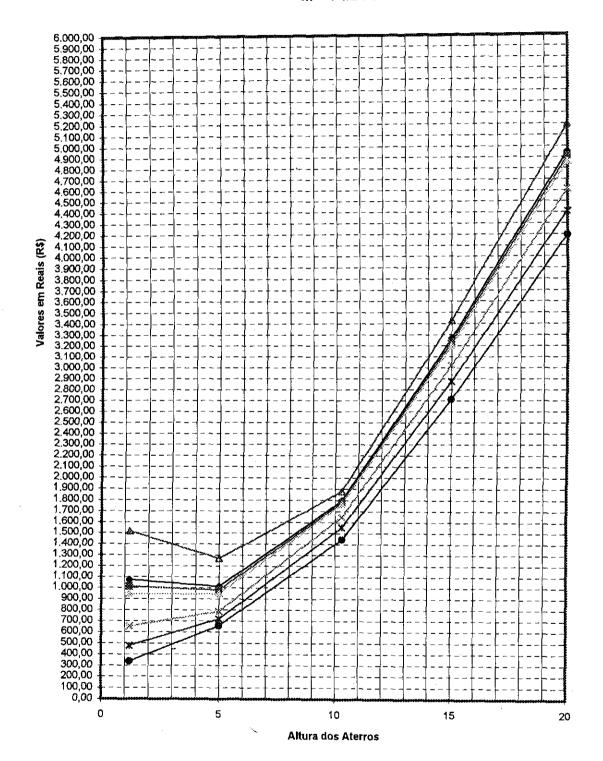

CORTE												_					Escay 1 a 2ª R\$ / m²	Escav de 3 cat. R\$ (m)	Alarro R3 (m²	Revest. R\$/m²	Juntas RS / m	Limpeza R\$ / m*	Expurgo R\$ / m*	Reg Prot.∓al R\$ / m²	Obres Comps. R\$	Total R\$
Arquivo	Seção		_		М	ĸ	Vazaci	freeboard1	freeboardZ	Pista Eaq	Plate Dir	ARura dos	Revesi,	alude	Fimi	p (tur)	1,82	7 H	2,73	114.78	1,47	4 10	1 66	1 87		
<u> </u>	<u> </u>		1	_			[84,48]	(m)	<u>(m)</u>	im	(m)t	Cortes (m)	(cm)	Ext.	Crimitado	Orimizado										
Sh3opG'xm 1_3	ST FR	1.000			7748618	47,00	150 00	0,53	',34	2,20	4.00	1,00	20,00	033	12,01	6,33	57 82	114 ***	0,00	240	9,3"	63,13	0.00	2.**	25,38	344.5
\$83ep05 xts3	STIFF	9,600	1 (0,3	33 1,7	77 ami 18	47.00	150.00	0,63 (1,34	0,00	4,00[5.00	20,00	0,33	12,01	8.32	84.45	205.95	0.00{	2.40	6,3"	65.79	0,00	10,54	41,32	2 '0" 41
\$63op10 xis _3	STIFR	9,000	دبه ت	33 1,7	77 486 18	47.00	150 00	0,63	1,34	0,00	4,00	10,00	20 00	0,33	12 01	8 33	72 82	334,92	0,00	2,40		659.13	0.00	2*.08	52,41	3 '52 74
Sti2op15.xts 3	STIFR	0,000	1 8,3	33 1,7	7748518	47,00	150,00	0,63	1,34	0,00	4,00	15,00	20 00	0,5C	12 01	8,33	1'365	525,57	0,00	2,40	6,3°	46	0.00	33,54	94 61	4 825 01
502op20.xis 1_3	STIFE	9,000	1 0.3	33 1.7	7748618 ;	47,00	150,00	0,83	1,34	0.00	4,00	20,00	20,00	C,5C	12,01	8.33	125,15	752,97	0.00	2,40	6,3*	82.46	0.00	44.72	131,52	6.727 *5
Striop30.x% 1_3	STIFR	0,000	1 _ 8,3	33 1,7	7748618	47,00	150,00	0,63	1,34	900	4,00	30,00	20,00	8	12 01	8,33	246,15	1 7,46	0,00	2,40	6,37	122.46	0.00	84.85	290 64	14 822 56
50°0040 xs 1_3	STIFR	0 000	1 0,3	33 1 1	7748618	47 00 ;	150,00	263	1 34	0.00	4 00	40,00	20.00	1,30	1201	8,33	318,15	2.81210	0.00	2,40	6.37	142,46	0,00	113 14	468.23	23 879.96
9tr5opC1.xts 1_5	ST-FR	0,000	1 0,2	90 11	13pgo78	48,63	150,20	2,63	1 34	9.00	4 00	1,00	2G,0C	0.20	٠3,3٠	8,*2	53,73	113,99	6,30	2,66	705	8 40	5,00	2 04	26 69	1 30 36
31:50p05.xm _5	S FR	4.665	1 0,2	90 <u>1,</u> 1	130007E	48,63	150,00	263	1,34	0.00	400	5 00	20,00	0.20	,3,3,	8,12	57,73	199,16	0,30	2,65	7.05	63,09	2,00	10,20	40.58	2 089,82
SMSop10 xis 5	S"FR	4.400	1 0,2	00 1.4	1396676	48.63	150 00	063	1 34 (700	400	10,00	20,00	0 20	12.31	6,12	62.73	314,63	3,20	2,66	*05	85,08	3,30	20,40	59,38	3 926,42
StiSop15.xls 1_5	S*FR	9,696	1 0,2	00 1,1	396978	48.63	150.00 ;	0,63	1.34	9,00	4 OC	5,00	20,00	0,20	3,3	a 12	8.23		0,00	2.66	°.05	67,09	0,00	30,59	83, 7	4 289.
Stt5op20_4s 1_5	STIFR	5,500	5 4,2	00 1,8	350073	48,63	150.00	0,53	1,34	5,00	4,00	20,00	20 00	0.20	13,31	8,12	92,73	635 56	0.00	2 60	7,05	69,09	0,00	4C,79	112,07	5 715 52
SH4003C x 1 5	STIFR	9,000	1 12	00 1,8	396672	48,63	150,00	C,83	.34	0.00	4,00	30,00	20 00	0,25	13 31	8 12	130,23	11398	0.00	2 66	7,05	76 09	0.00	6, 68	19C,14	6 59" 11
\$*3op40 xm 1_5	STIER	8 000	1 6,2	04 1	139007E	48 63 1	15C 00	ះខ	' 34	0.00	4.00	46 OC	20 00	2 33	1331	5 12		1 824 08	0.00	2 58	7.35	87.75	0.00	84 33	305 58	15 584 53

QUADRO A2 1 29- ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STIFR PARA VAZÃO Q ≈ 165 m³/s


CORTE														_		_	Escay 1 e 2º R\$ / m²	Escav de 3 cat. R\$ (m)	Aleiro R\$ 'm'	Revest. R\$ 'm'	Jumas R\$ 'm	Limpeza R3 / m²	Expurgo R\$ / m²	Reg.Prot.Tal	Obras Compl. RS	Total R\$
Arquivo	845	ilo oli		J.	М	K	Vazão ém**el	President 1	freeboard2	Piete Enq	Pista Der	Altura dos Cortes omi	Ravest.	Talude	F (m)	h (m)	182	7,94	2"3	114.78	1,47	a 10	1.56	1 07		1
Sti3opC* an 3	57	£3	0,6001	1,333	1,7749818 ;	47,90	95.00	285	'.35 ;	2.20	4.00	100	(cm) 20.00	2 33	12.45	5 64	50,40	12461	9.00	2.40	5 80	83.79	0.00	2	29,20	1 438 40
\$83op35_re 3	ST	Fa	0,0001	1 233	1,7748818	47,00	85.00	265	1,36	3,30	4,30	5 00		6,33	12.45	8.64		2*8.46	0,00	2.49	6 00	86.45	0.00	13.54	43,59	2 222 80
\$039p12.xm3	, sn	cq	0,0001	1.333	1,7748616	47,00	165.00	3 65	.36	5,00	4.00	10 00	20,00	0,33	12,45	8,64	74.49	350,76	3,30	2.40	8,50	69.79	0.00	21,00	95,20	
9520p15 xts 1_3	STI	F-R	0,0001	0.333	1,7748618	47,90	185,00	965	.36	0.00	4,00	15 00	20,00	0,50	1245	5,64	115,32	544,73	5,00	2.49	6.50	_ 78 13	0.00	33,54	97,03	4 994 53
\$220p20 xts 1_3	STI	FR	6,9001	0,333	1,7748618	47,60	185 00	0.65	`,38	0.00	4,00	20 00	20,00	0.50	12.45	8 64	127,82	775,31	0.00	2,49	9,90	83 13	0.00	44.7	135,38	6 904,32
Str10p30.xis 1_3	STI	FR .	6,8001	0,333	1,7748618	47,00	185,66	0 65	1,36	0,00	4,00	30 00	20,00	100	12,46	8,64	247,82	1 745,84	0,00	2,46	8,80	123.13	0,00	84,65	295,55	15.073,18
Striap40 xis 3	SŤI	FR	9 9001	0 133	1 7748518	47,44	185,00	0.65	1 36	000	4 00	40.00	20,00	1,00	12,45	8 64	317,82	284*92	0.00	2 49	8 80	143,13	3.00	113 14	474.21	24 184,55
SHScp01xHs 1.5	5~	FR	8,0001	0,200	1 8396078	48,63	165,00	0,65	1 36	0,00	4 00	1,00	20,00	0,20	13,79	8.41	55,25	123,66	0.00	2,78	7,31	62,11	2,00	2,54	28,52	454.59
StroopU6 xxx5	j 5-	FR	8,9501	0,200	1,8396678	48,63	165,00	0,95	1,36	0.00	4 0 €	5,00	20.00	0.20	13,79	8,41	59 26	211 3C	000	2,76	7,31	63,71	3,00	10 20	42,81	2 183,20
Strang Com 5	S*I	FR	0,0001	4,204	1,8396078	48,63	165,00	C,95	1 38	0.00	4 00	10,00	20,00	0,20	13,79	9,41	64 28	329 66	0.00	275	7,31	65,71	0,00	20,40	62,15	3 168 91
S::50p*5 xm 1_5	j 5*!	FR	0,0001	1,200	1,6396075	48 63	-55,30	2,65	.30	0.00	4,00	5,00	20.00	9,20	13.19		89 26	478 42	0.00	276	731	57,71	5,50	30 59	86 93	4 433 37
Se5op20 x4r 1 5	\$7	≠ 2	0,0001	4,200	1,8390078	48,83	165,00	C.55	1,38	0,00	4 00	20,00	20 OC	J,26	13 9	8,4*	94,26	856 9	0,00	2,78	731	59,71	9,00 9.00	40.70	115.77	5 304 22
\$540p30 xts 1 5	STI		0,0001	1,200	1,2396078	48 63	165.00	0,66	1,38	3,90	4.0G	30,00	20 00	2,25	13 7	E,4"	3' '6'	1 141 59	0,00	275	7.31	76.71	0.00	91 85	194.72	9 936 03
31-30p40 xls 1_5	STI	FR :	9,8001	0.200	1.9396078	49.63	- 55 OC	0 85	1,36	2.30	4,00	40.00	29 00	2 33	13 79 ;	8.41	190 94	' 85" 8"	COC	275	731	88 38	0.00	94 33	358	15 9"3 6"

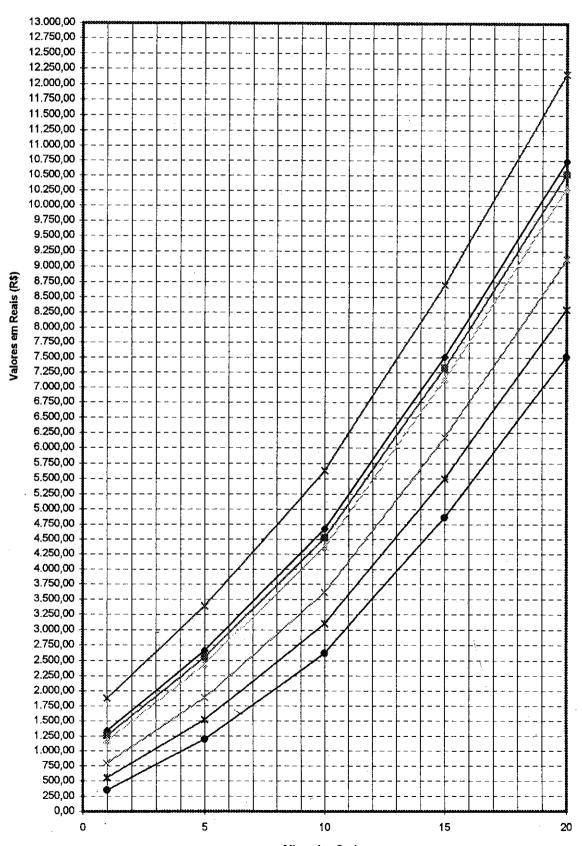
QUADRO A2 1 30 - ESTIMATIVA DE CUSTOS DA SEÇÃO TIPO STIFR PARA VAZÃO Q = 180 m³/s

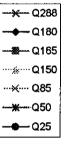
CORTE																Escav 1 e 2° RS / m²	Escav de 3 cat. R\$ 'm"	Alerro R\$ i m²	Revest. R3 'm'	Juntas R\$ / m	Umpeza R\$ 'm'	Expurgo 4\$ 're'	Reg Prot Tal RS · m²	Oteran Compt. R\$	Total RS
Arquivo	Seção	•	_	٠	ĸ	Vazão am*(a)	treeboard*	heeboard2	Pieta Esq	Plata Dir	ARura dos Cortes imi	Revest.	Talude	F (m) Otomizado	h (m) Orimszadc	1,92	7,96	2 "3	*14 75	147	0 *0	1 55	٠٥-		
							1111	577		րող		(57)	Ext.												
Sti3opC xm 3	5*120	G.9091		1.7748518	47.00	.90,00	0 €"	1.41	5 00	4 0C	1 00	20,00	0.33	12.86	5 92	51,06		000	2,51	5 62	54,42	0,00	2	29.91	525 54
\$83op05 xis 1_3	STIFR	0.0001	0.33	1,7748618	47.00	180,00	067	1.41	0,00	4 OC	5 00	20.00	0_33	12.86	9 92	67.74	Z3C,45	0.00	2,5*	6,82	57,08	cc	.0,54	45 "5	2 333 37
Sti3op10 xts 1 3	STIFR	0.0061	0,13	1.7748518	47,00	180,00	0.67	1,41	0.00	4 OC	19 00	20,00	0,33	12.86	9,92	⁷ 5.36	365.66	0.00	2,57	6 82	70,42	0,00	21,08	57.96	3.461.05
Stt2op15 xis 1_3	STIFR	0.0001	0.13	1,7748518	47.00	- 6C, DC	0.67	141	0,00	4 OC	15 00	20,00	0.50	*286	9.92	118,88	562,97	0.00	2,5"	6,62	79,75	3.30	33,54	. C+ 08	5 155 69
582op20 xls 1_3	5TI=R	0,0001	0,13	1,7748618	47,86	9C,00	067	1,41	0.00	4 OC	20.00	20,00	0,50	12.86	8,92	129,38	796,72	0.00	2,57	6.62	53,75	2,00	44,72	.39 04	. 39C 9.
S810030 xts 1_3	577=9	9,0901	9,23	1,7748618	47.00	100 DC	0.67	14	0.00	400	30.00	20,00	1.00	12.86	8,92	249.38	1 774,24	0.00	2.5*	6.A2	23,75	2,00	84,95	300,20	153.032
S0'0040 xhs 1_3	STIFR	0.0001	0 33	1 7748618	4",00	160,00	0.67	141	0.00;	400	40 00	20,00		12.86	8,90	319 38	2 661,75	000	2 57	6.62	143 °S	0.00	3.4	479.85	24 4*2 45
Str5op01.xts 1_5	डगः≂र	8,0001	0,200	1,8386078	48,63	180,00	0.67	1,41	0.00	400	.00	20,00	C,20	*4.25	E,5%	56, 3	132,96	0.00	2,85	* 55	62,86	0.00	2,34	3C.25	• 544 4€
5050005 xls 1_5	: STIFR	0,9001	0,20	1,8396078	48,83	180.00	0.5	2.40	0.00)	4,00	5.00	26,00	₹,20	4.25	8,59	80,73	222 96	0.00	2.95	~ 5E	54,29	20,00	-,2-	44.94	1 791 54
Sti5op10 xts 1 4	ST-¢=	0,0001	. 029	1,8396078	48,83	180,00	06	1,41	0.00	4.00	10,00	20,00	0,20	· 4 25	6,55	65,73	344 42	C 00	2,85	7.56	95,26	0.90	20,00	54 59	3 299 14
\$1500'5 x 1 _ 5	STER	0,9001	0,20	1,8386078	48,63	180 00	0.67	1,41	9 00	4,00	15.00	20,00	0,20	14,25	£ 59	90,73	495 86	0,00	2,95	* 56	58,29	0,00	30,58	63.96	4 589 19
S550p20 xm 5	57 = 5	D,8001	0,200	1,8386078	48,63	180 00	C.67	1,4	0.00	4,00	20,20	20,30	0,20	14,25	8.09	96,73	677.36	0.00	2,85	7.55	⁷ 7,29	2,20	40,79	119 29	E 383 54
S04op3C.xns 5	S-FE	0 0001	0.20	183960*8	48 63	150 00	3,57	1,41	0.00	4,30	36,30	20,00	3,25	4.25	2,99	133 23	1 157,77	0,00	2,65	7,55	77,25	5,30	€*.₽\$	199.2"	10 152 53
3b3op4C ×m 5	S- EK	D DOG 1	0.200	1 83860"8	44 63	190.00	0.57	141	0 OC	4 30	4C 3C	20 00	3 32	14.2€	8 59	182.40	1 889 85	5 ∞	2 85	* 55	98 9€	0.00	84 33	3-562	.6.4.74



A2.1.31a - Curva de Custos (Custo x Altura)

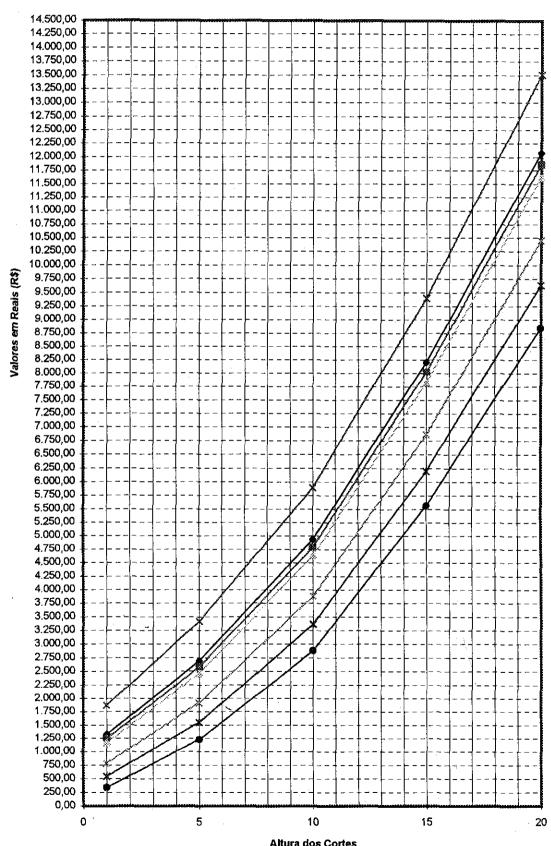
Seção STAR - Aterro m = 1 1/2 : 1





A2.1.32a - Curva de Custos (Custo x Altura)

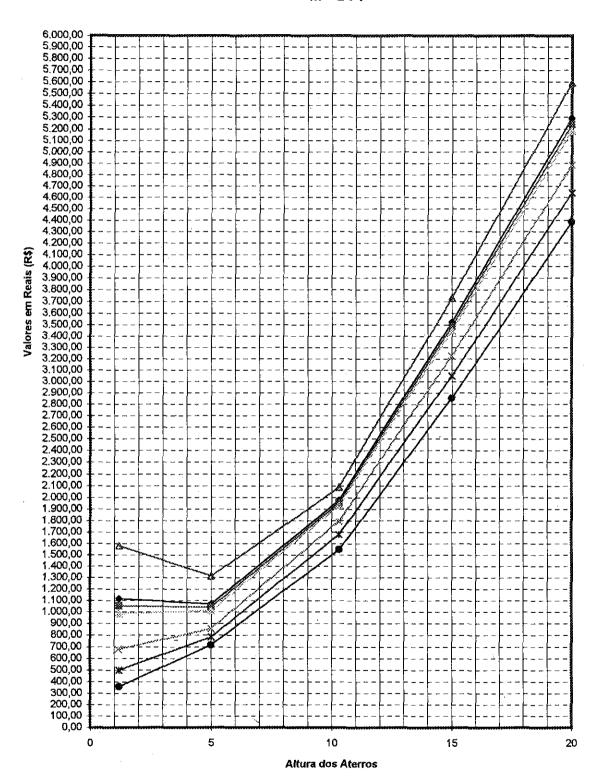
Seção STAR - Corte m = 1 1/2 : 1

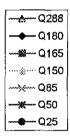

000225

Altura dos Cortes
Talude Externo de Corte = 1:1

A2.1.33a - Curva de Custos (Custo x Altura)

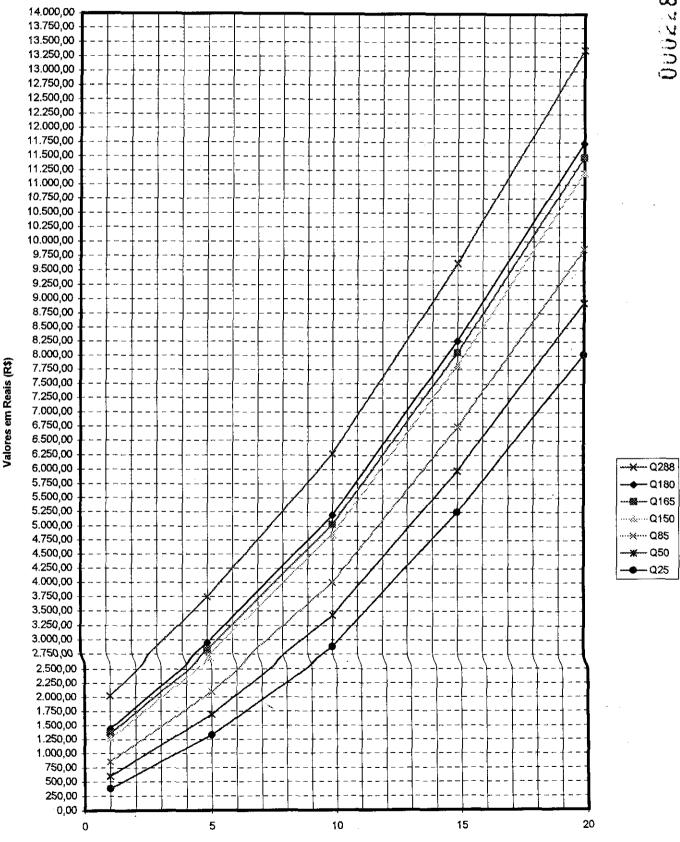
Seção STAR - Corte m = 1 1/2 : 1


-->∕--- Q288


Altura dos Cortes
Talude Externo de Corte = 1,5:1

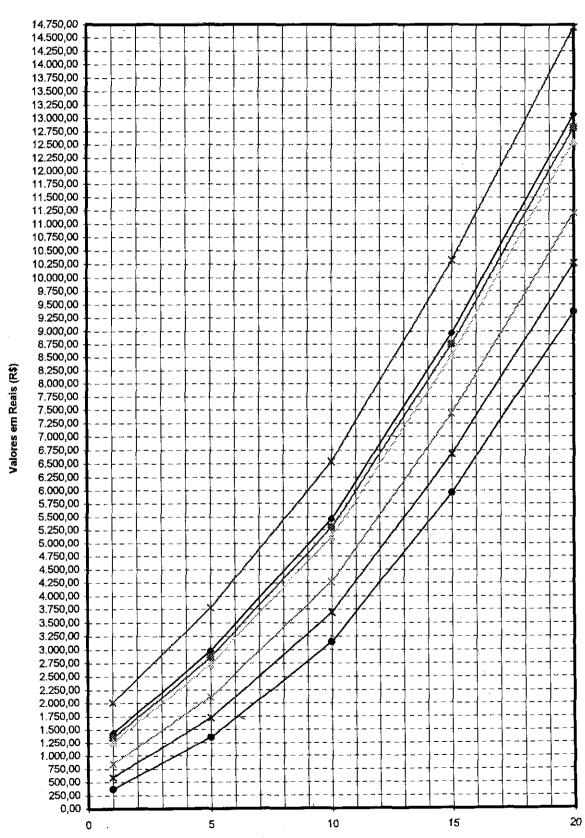
A2.1.34a - Curva de Custos (Custo x Altura)

Seção STAR - Aterro m = 2 : 1



A2.1.35a - Curva de Custos (Custo x Altura)

Seção STAR - Corte m = 2:1



Altura dos Cortes Talude Externo de Corte = 1 : 1

A2.1.36a - Curva de Custos (Custo x Altura)

Seção STAR - Corte m = 2 : 1

10 15

Altura dos Cortes

Talude Externo de Corte = 1,5 : 1

RESUMO DE CUSTOS

ATERRO

ſ	STAR	STAR	STAR	STAR	STAR
,	K ≈ 71,43	K = 71 43	K = 71,43	K = 71,43	K ≈ 71,43
Í	m = 1 1/2 1				
	Tal Ext Corte = 2	Tal Ext Corte = 2	Tal Ext Corte ≔ 2	Tal Ext Corte = 2	Tal Ext Corte = 2
ł	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m
	11	5	10	15	20
Vazão	Total	Total	Total	Total	Total
(m3/s)	R\$	R\$	R\$	R\$	R\$
25,00	337,74	656,25	1 444,80	2 708,67	4 193,36
50,00	476,87	716,86	1 555,95	2 872,75	4 410,38
60,00	528,53	737,99	1 588,31	2 921,68	4 475,85
85,00	651,25	785,28	1 652,39	3 021,45	4 611,32
150,00	945,77	946,68	1 762,05	3 201,71	4 862,19
165,00	1 011,22	979,77	1 780,40	3 233,93	4 908,28
180,00	1 074,20	1 012,94	1 796,89	3 263,20	4 950,33
288,00	1 516,12	1 269,05	1 880,24	3 427,11	5 193,90

CORTE

ſ	STAR	STAR	STAR	STAR	STAR
ľ	K ≈ 71,43	K = 71,43	K = 71,43	K = 71,43	K ≈ 71,43
ł	m = 1 1/2 1	m ≈ 1 1/2 1			
ł	Tal Ext Corte = 1	Tal Ext Corte = 1	Tal Ext Corte = 1	Tal Ext Corte = 1	Tal Ext Corte = 1
ļ	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m
	1	5	10	15	20
Vazão	Total	Total	Total	Total	Total
(m3/s)	R\$	R\$	R\$	R\$	R\$
25,00	347,51	1 194,95	2 619,62	4 864,77	7 507,32
50,00	553,35	1 524,26	3 103,27	5 502,76	8 299,64
60,00	625,87	1 635,39	3 262,66	5 710,42	8 555,57
85,00	793,57	1 886,35	3 617,69	6 169,52	9 118,75
150,00	1 177,07	2 434,54	4 371,74	7 129,44	10 284,52
165,00	1 260,00	2 549,84	4 527,50	7 325,64	10 521,18
180,00	1 339,09	2 658,74	4 673,66	7 509,08	10 741,88
288,00	1 881,39	3 386,84	5 634,02	8 701,69	12 166,75

CORTE

Г	STAR	STAR	STAR	STAR	STAR	
į.	K ≈ 71,43	K = 71 43	K = 71,43	K = 71,43	K ≈ 71,43	
- 1	m = 1 1/2 1	m = 1 1/2 1	m = 1 1/2 1	m = 1 1/2 1	m = 1 1/2 1	
i i	Tal Ext Corte = 1,5	Tal Ext Corte = 1,5	Tal Ext Corte = 1,5	Tal Ext Corte = 1,5	Tal Ext Corte = 1,5	
]	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	
ı	1	5	10	15	20	
Vazão	Total	Total	Total	Total	Total	
(m3/s)	R\$	R\$_	R\$	R\$	R\$	
25,00	337,12	1 224,19	2 881,06	5 561,41	8 842,12	
50,00	542,96	1 553,49	3 364,71	6 199,39	9 634,45	
60,00	615,47	1 664,62	3 524,10	6 407,05	9 890,38	
85,00	783,17	1 915,58	3 879,14	6 866,16	10 453,55	
150,00	1 166,67	2 463,77	4 633,18	7 826,07	11 619,32	
165,00	1 249,61	2 579,07	4 788,94	8 022,28	11 855,99	
180,00	1 328,70	2 687,97	4 935,11	8 205,71	12 076,69	
288,00	1 870,99	3 416,07	5 895,46	9 398,32	13 501,55	

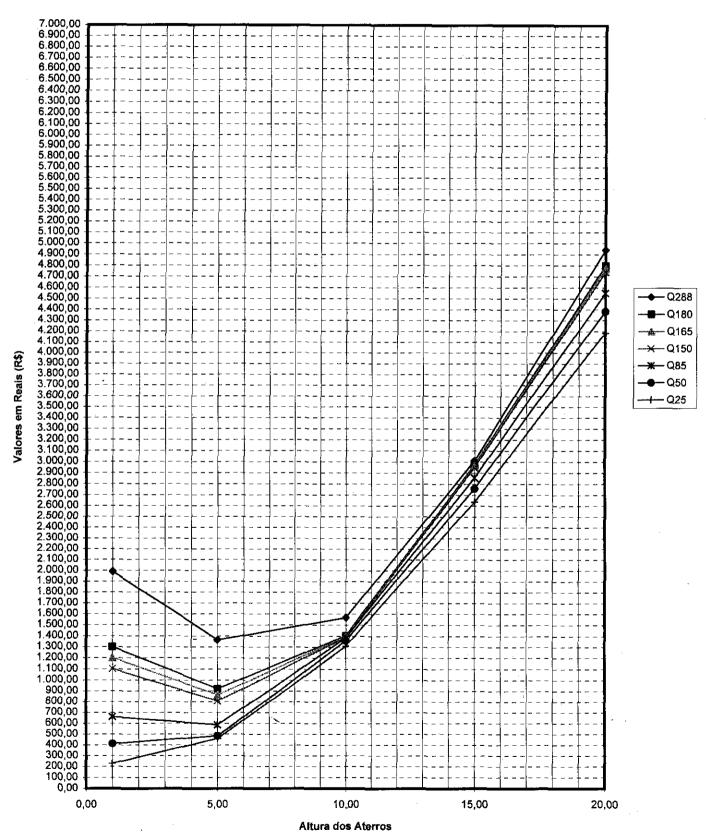
RESUMO DE CUSTOS

ATERRO

	STAR	STAR	STAR	STAR	STAR
	K≈71,43	K = 71,43	K = 71 43	K = 71,43	K = 71,43
İ	m = 2 1	m = 2 1	m = 2 1	m = 2 1	m ≃ 2 1
	Tal Ext Corte = 2	Tal Ext Corte = 2	Tal Ext Corte = 2	Tal Ext Corte = 2	Tal Ext Corte = 2
	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m
	1	5	10	15	20
Vazão	Total	Total	Total	Total	Total
_ (m3/s)	R\$	R\$	R\$	R\$	R\$
25,00	358,60	715,43	1 547,49	2 854,88	4 383,08
50,00	500,03	784,47	1 679,21	3 048,77	4 639,14
60,00	552,95	806,60	1 718,01	3 107,03	4 716,88
85,00	679,07	855,98	1 795,58	3 226,71	4 878,65
150,00	984,23	1 011,46	1 931,33	3 445,95	5 181,38
165,00	1 052,45	1 041,23	1 954,62	3 485,72	5 237,64
180,00	1 118,05	1 071,53	1 975,62	3 521,86	5 288,91
288,00	1 581,44	1 313,89	2 087,08	3 728,08	5 589,89

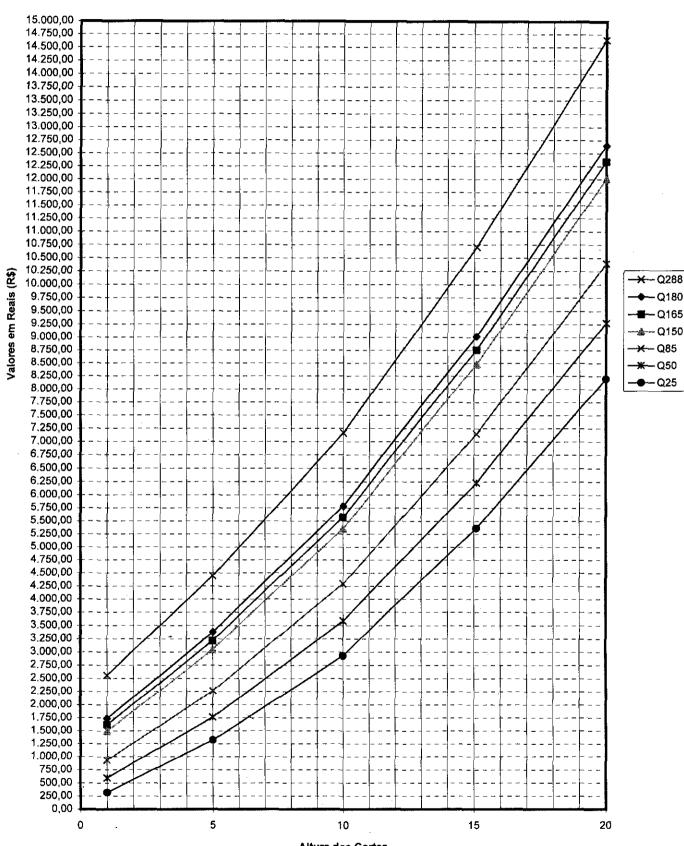
CORTE

ſ	STAR	STAR	STAR	STAR	STAR
i	K ≈ 71,43	K = 71,43	K = 71,43	K = 71,43	K = 71,43
- 1	m = 2 1	m = 2 1	m = 2 1	m = 2 1	m≈2 1
	Tal Ext Corte = 1	Tal Ext Corte = 1	Tal Ext Corte = 1	Tal Ext Corte = 1	Tal Ext Corte = 1
1	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m
	1	5	10	15	20
Vazão	Total	Total	Total	Total	Total
(m3/s)	R\$	R\$	R\$	R\$	R\$
25,00	380,93	1 329,88	2 881,42	5 253,46	8 022,89
50,00	600,70	1 694,66	3 427,46	5 980,76	8 931,45
60,00	678,16	1 817,53	3 607,11	6 217,18	9 224,64
85,00	<u>85</u> 7,33	2 094,91	4 007,24	6 740,06	9 870,28
150,00	1 267,71	2 700,05	4 855,83	7 832,10	11 205,76
165 00	1 356,70	2 827 47	5 031,30	8 055,62	11 477,34
180,00	1 441,37	2 947,45	5 195,41	8 263,86	11 729,70
288,00	2 024,17	3 751,28	6 275,53	9 620,26	13 362,39


CORTE

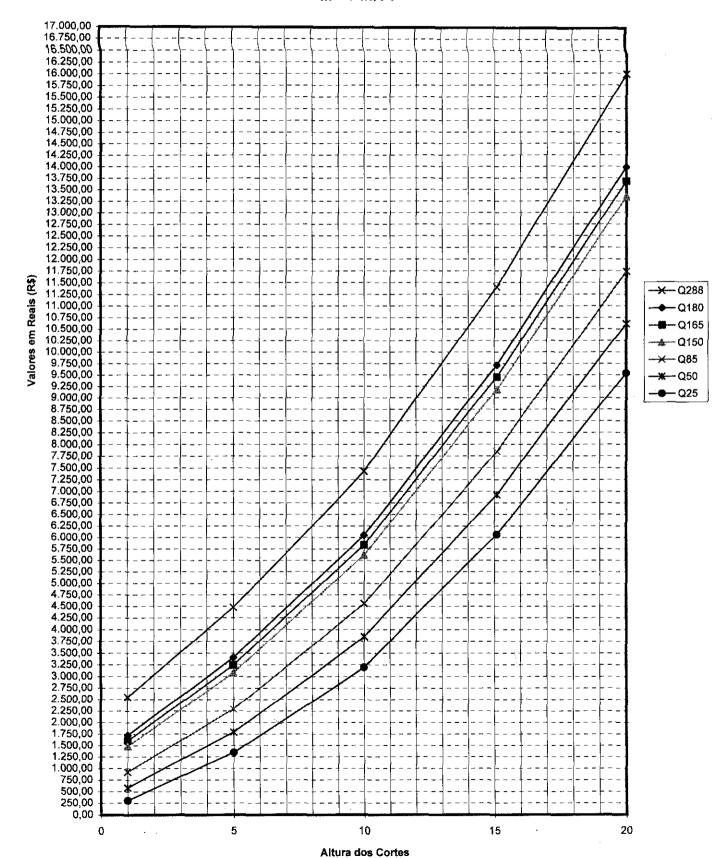
ſ	STAR	STAR	STAR	STAR	STAR
	K ≈ 71,43	K = 71,43	K ≈ 71,43	K = 71 43	K = 71,43
	m = 2 1	m = 2 1	m = 2 1	m = 2 1	m ≈ 2 1
1	Tal Ext Corte = 1,5	Tal Ext Corte = 1,5	Tal Ext Corte = 15	Tal Ext Corte = 1,5	Tal Ext Corte = 1,5
	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m
	1	5	10	15	20
Vazão	Total	Total	Total	Total	Total
(m3/s)	R\$	R\$	R\$	R\$	_R\$
25,00	370,54	1 359,11	3 142,87	5 950,09	9 357,69
50,00	590,31	1 723,89	3 688,90	6 677,39	10 266,25
60,00	667,77	1 846,76	3 868,55	6 913 81	10 559,45
85 00	846,94	2 124 14	4 268,68	7 436,70	11 205,08
150,00	1 257,32	2 729,28	5 117,27	8 528,73	12 540,56
165 00	1 346,30	2 856,70	5 292,74	8 752,26	12 812 14
180,00	1 430,98	2 976,68	5 456,85	8 960,49	13 064,50
288,00	2 013,78	3 780,51	6 536,97	10 316,89	14 697,19

A2.1.37a - Curva de Custos (Custo x Aitura)


Seção STANR m = 1 1/2 : 1

A2.1.38a - Curva de Custos (Custo x Altura)

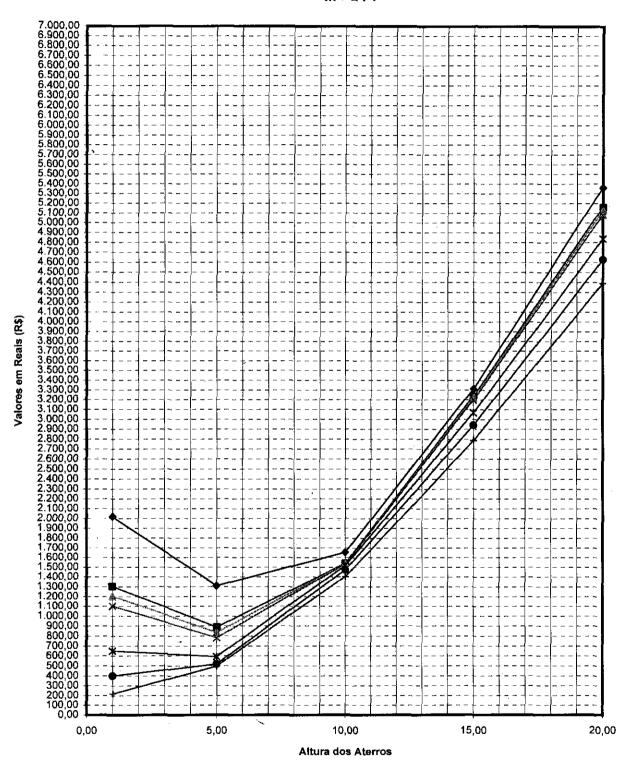
Seção STANR - Corte m = 1 1/2 : 1



Altura dos Cortes
Talude Externo de Corte = 1 : 1

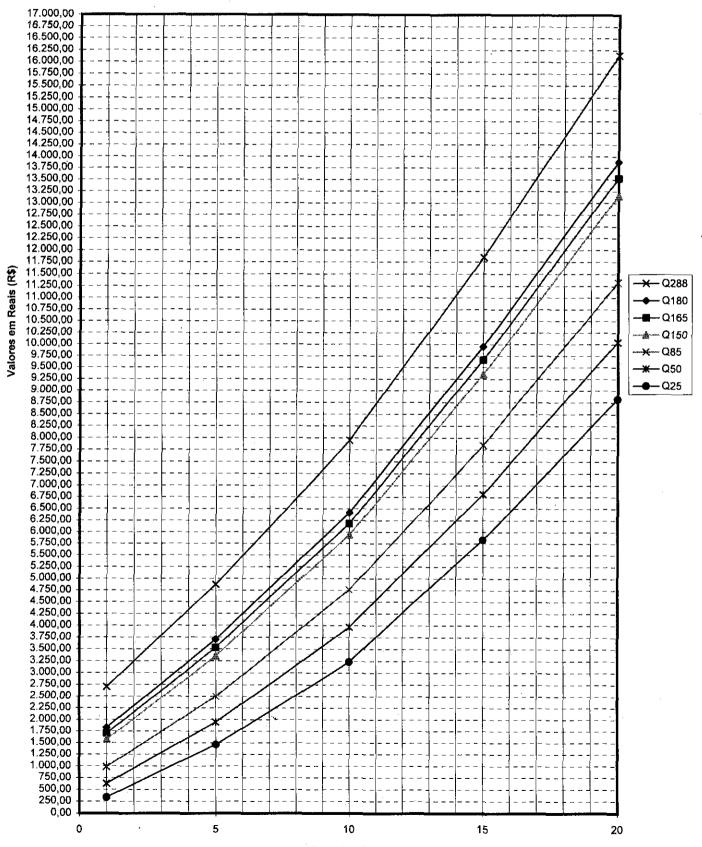
A2.1.39a - Curva de Custos (Custo x Altura)

Seção STANR - Corte m = 1 1/2 : 1


Talude Externo de Corte = 1,5 : 1

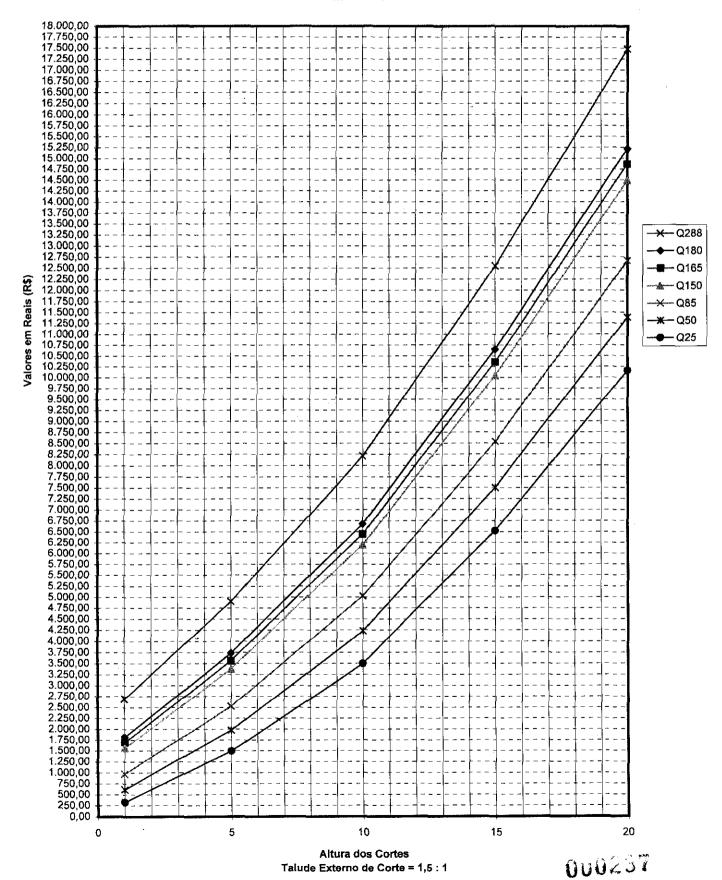
- Q288 - Q180 - Q165 - Q150 - Q85 - Q50 - Q25

A2.1.40a - Curva de Custos (Custo x Altura)


Seção STANR m = 2 : 1

A2.1.41a - Curva de Custos (Custo x Altura)

Seção STANR - Corte m = 2 : 1


Altura dos Cortes
Talude Externo de Corte = 1 : 1

000236

A2.1.42a - Curva de Custos (Custo x Altura)

Seção STANR - Corte m = 2:1

ATERRO

	STANR	STANR	STANR	STANR	STANR
	K = 30,30	K = 30 30	K = 30,30	K = 30 30	K = 30,30
1	m = 1 1/2 1	m = 1 1/2 1	m = 1 1/2 1	m = 1 1/2 1	m = 1 1/2 1
	Tal Ext Corte = 2	Tal Ext Corte = 2	Tal Ext Corte = 2	Tal Ext Corte = 2	Tal Ext Corte = 2
	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m
	1	5	10	15	20
Vazāo	Total	Total	Total	Total	Total
(m3/s)	R\$	R\$	R\$	R\$	R\$
25,00	229,28	460,72	1 308,27	2 637,12	4 186,78
50,00	412,79	485,26	1 359,08	2 760 14	4 382,03
60,00	484,52	522,94	1 369,94	2 793,52	4 437,92
85,00	_661,68	587,47	1 385,25	2 857,11	4 549,79
150,00	1 103,15	807,33	1 391,07	2 950 43	4 738,12
165,00	1_203,52	864,53	1 397,21	2 963,68	4 769,87
180,00	1 300,68	921,68	1 403,90	2 974,54	4 797,89
288,00	1 989,95	1 363,91	1 567,97	3 011,03	4 940,29

CORTE

[STANR	STANR	STANR	STANR	STANR	
	K = 30,30	K = 30,30	K = 30,30	K = 30 30	K = 30.30	
	m = 1 1/2 1					
	Tal Ext Corte = 1	Tal Ext Corte = 1	Tal Ext Corte = 1	Tal Ext Corte = 1	Tal Ext Corte = 1	
	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	
	1	5	10	15	20	
Vazão	Total	Total	Total	Total	Total	
(m3/s)	R\$	R\$	R\$	R\$	R\$	
25.00	320,93	1 319,93	2 934,03	5 368,63	8 200,62	
50,00	595,46	1 762,91	3 587 59	6 232,76	9 275,32	
60,00	695,56	1 915,54	3 805,87	6 516,69	9 624,90	
85,00	933,56	2 266,16	4 297 27	7 148,86	10 397,85	
150,00	1 494,77	3 048,98	5 357,10	8 485,72	12 011,72	
165,00	1 618,45	3 215,82	5 577,90	8 760,46	12 340,42	
180,00	1 737,23	3 374,61	5 786,71	9 019,29	12 649.26	
288,00	2 559,97	4 444,40	7 165,30	10 706,68	14 645,46	

	STANR	STANR	STANR	STANR	STANR	
	K = 30,30	K ≈ 30,30	K = 30,30	K = 30 30	$K = 30 \ 30$	
	m = 1 1/2 1	m = 1 1/2 1 Tal Ext Corte = 1,5				
	Tal Ext Corte = 1,5	Tal Ext Corte = 1,5	Tal Ext Corte = 15	Tal Ext Corte = 1.5		
	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	
	1	5	10	15	20	
Vazão	Total	Total	Total	Total	Total	
(m3/s)	R\$	R\$	R\$	R\$	R\$	
25,00	310,54	1 349,16	3 195,48	6 065,26	9 535,42	
50,00	585,06	1 792,14	3 849,03	6 929,39	10 610,12	
60 00	685,17	1 944,77	4 067 31	7 213 32	10 959,70	
85,00	923,17	2 295 39	4 558.71	7 845,49	11 <u>732</u> 65	
150,00	1 484,38	3 078 21	5 618,54	9 182 35	13 346,53	
165,00	1 608,06	3 245,05	5 839,34	9 457,09	13 675,22	
180.00	1 726 84	3 403 84	6 048,15	9 715 92	13 984,07	
288,00	2 549,58	4 473 63	7 426,74	11 403 31	15 980,26	

ATERRO

ſ	STANR	STANR	STANR	STANR	STANR	
i	K = 30.30	K = 30,30	K = 30,30	K = 30,30	K = 30 30	
	m = 2 1	m = 2 1	m≈2 1	m = 2 1	m = 2 1	
	Tal Ext Corte = 2	Tal Ext Corte = 2	Tal Ext Corte = 2	Tal Ext Corte = 2	Tal Ext Corte = 2	
	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	
	11	5	10	15	20	
Vazão	Total	Total	Total	Total	Total	
(m3/s)	R\$	R\$	R\$	R\$	R\$	
25,00	219,50	497,33	1 404,08	2 787,35	4 391,44	
50,00	400,65	517,90	1 473,45	2 941,41	4 630,19	
60,00	472,42	528,00	1 489,88	2 984,27	4 699,49	
85,00	651,20	593,11	1 516,78	3 067,98	4 839,99	
150 00	1 101,79	782,46	1 533 14	3 199,38	5 083,39	
165,00	1 205,08	834,70	1 536,68	3 219,84	5 125,74	
180,00	1 305,00	887,40	1 541,02	3 237,25	5 163,39	
288,00	2 019,18	1 309.03	1 653,30	3 312,57	5 364,13	

CORTE

	STANR	STANR	STANR	STANR	STANR	
	K = 30,30	K = 30,30	K = 30,30	K = 30 30	K = 30,30	
	m = 2 1	m = 2 1	m ≈ 2 1	m = 2 1	m = 2 1	
	Tal Ext Corte = 1	Tal Ext Corte = 1	Tal Ext Corte = 1	Tal Ext Corte = 1	Tal Ext Corte = 1	
1	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	
	11	5	10	15	20	
Vazão	Total	Total	Total	Total	Total	
(m3/s)	R\$	R\$	R\$	R\$	R\$	
25,00	337,45	1 463,39	3 236,19	5 829,47	8 820,15	
50,00	625,33	1 948,82	3 968,55	6 808,77	10 046,38	
60.00	730,41	2 115,57	4 212,37	7 129,67	10 444,36	
85,00	980,77	2 498,42	4 760,85	7 843,76	11_324,07	
150,00	1 572,50	3 351,39	5 940,37	9 349,84	13 156,69	
165.00	1 703,37	3 533,31	6 186,11	9 659,39	13 530,06	
180,00	1 828,80	3 705,96	6 417,77	9 950,07	13 879,77	
288,00	2 701,04	4 870,75	7 948 25	11 846,23	16 141,61	

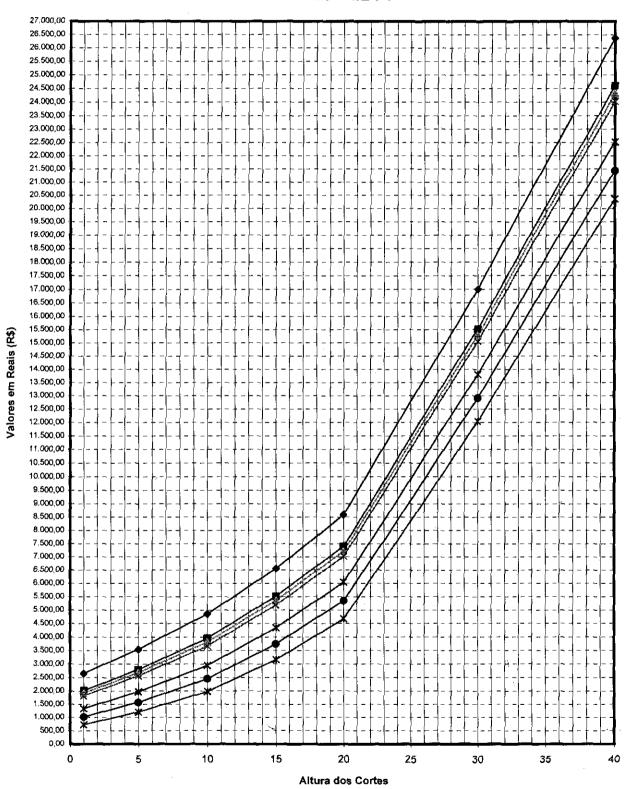
ſ	STANR	STANR	STANR	STANR	STANR	
1	K = 30,30	K = 30 30	K = 30 30	K = 30,30	K = 30,30	
ł	m = 2 1	m = 2 1	m = 2 1	m = 2 1	m = 2 1	
	Tal Ext Corte = 1,5	Tal Ext Corte = 15	Tal Ext Corte = 1,5	Tal Ext Corte = 1,5	Tal Ext Corte = 1.5	
į	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	
ŀ	<u>1</u>	_5	10	15	20	
Vazão	Total	Total	Total	Total	Total	
(m3/s)	R\$	R\$	R\$	R\$	R\$	
25 00	327,05	1 492,62	3 497,63	6 526,10	10 154,95	
50 00	614,93	1 978,05	4 229,99	7 505,40	11 381,18	
60 00	720,02	2 144,80	4 473,82	7 826,30	11 779 16	
85,00	970,38	2 527 65	5 022,29	8 540 40	12 658,87	
150,00	1 562,11	3 380,62	6 201,81	10 046,47	14 491 50	
165 00	1 692,98	3 562,54	6 447,55	10 356,02	14 864,86	
180,00	1 818,41	3 735.19	6 679 22	10 646 71	15 214 57	
288,00	2 690,64	4 899,98	8 209,69	12 542,87	17 476,42	

→ Q288

-Q180

~ Q165

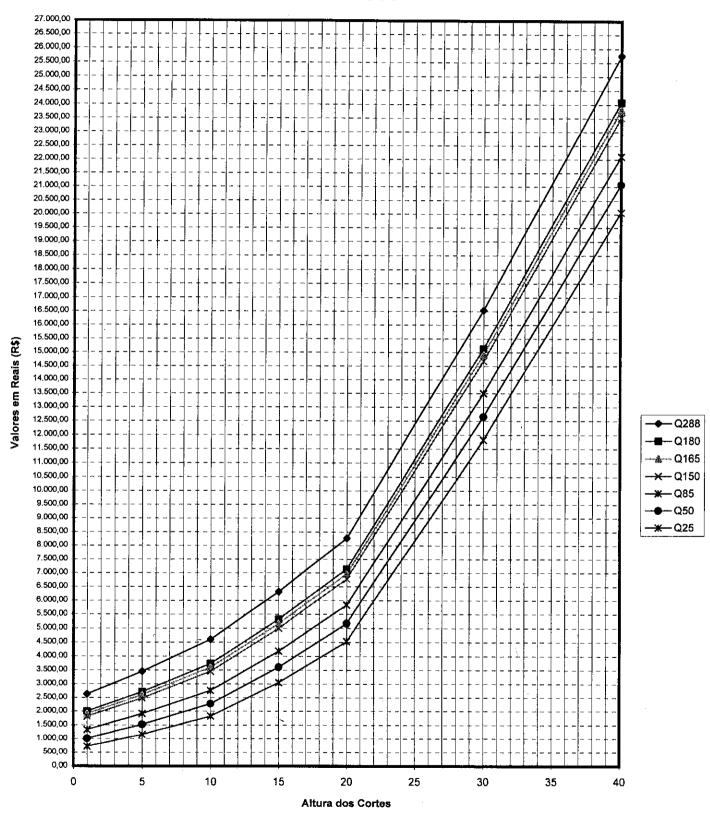
-Q150


-Q85

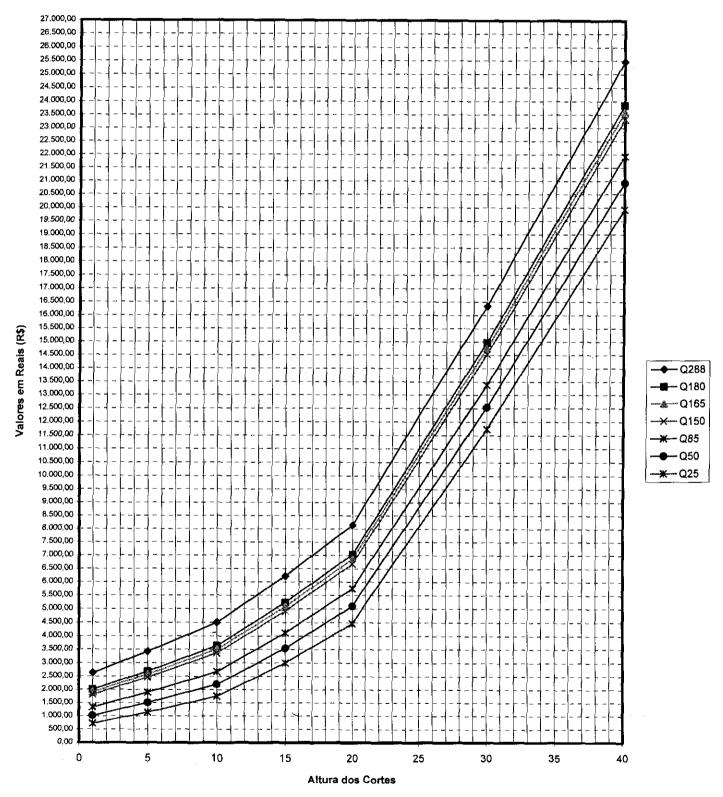
Q50

- Q25

A2.1.43a - Curva de Custos (Custo x Altura)


Seção STIR - Corte m = 1/2 : 1

A2.1.44a - Curva de Custos (Custo x Altura)


Seção STIR - Corte m = 1/3 : 1

A2.1.45a - Curva de Custos (Custo x Altura)

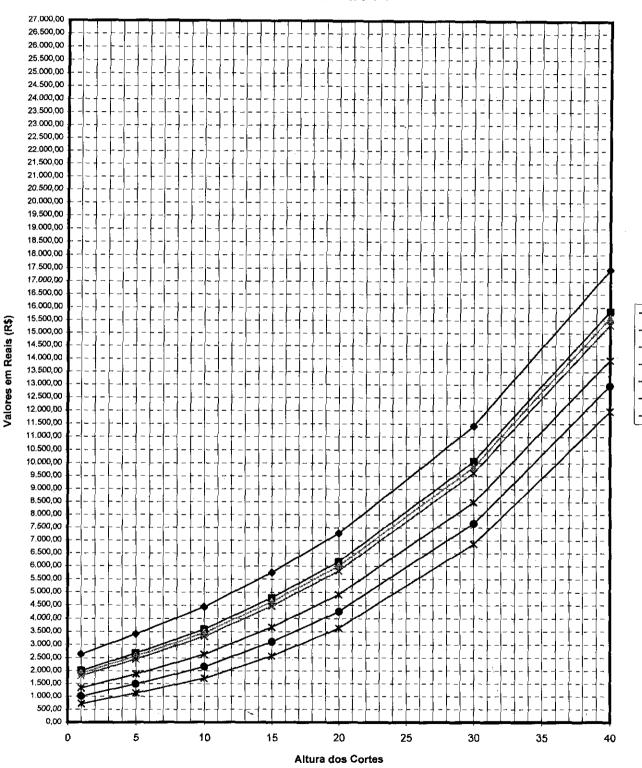
Seção STIR - Corte m = 1/4 : 1

-Q288

- Q165

- Q150

-Q85


⊕— Q50

ж— Q25

-**---** Q180

A2.1.46a - Curva de Custos (Custo x Altura)

Seção STIR - Corte m = 1/5 : 1

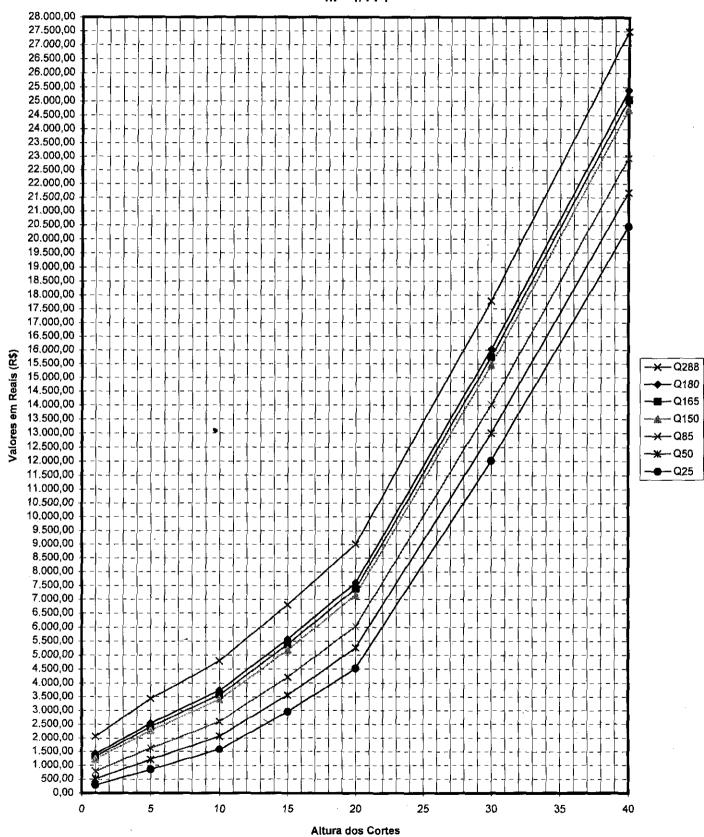
CORTE

	STIR						
	K = 71 43	K = 71 43	K = 71 43	K≈7143	K = 71 43	K = 71 43	K = 71 43
	m = 1 2	m = 1 2	m ≈ 1 2	m = 1 2	m = 1 2	m = 1 2	m = 1 2
	Tal Ext Corte = 1 2	Tai Ext. Conte = 1 2	Tal Ext. Corte = 1 2	Tal Ext Corte = 1 2	Tal Ext. Corte = 1 2	Tal Ext Corte = 1 1	Tal Ext. Corte = 1 1
	Altura de Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Alfura do Corte em m	Altura do Corte em m	Altura do Corte em m
	1	5	10	15	20	30	40
Vazão	Total	Tota)	Total	Total	Total	Total	Total
(m3/s)	RS	R\$	R\$	R\$	R\$	R\$	R\$
25,00	726,05	1 202,76	1 981,32	3 184.41	4 673 70	12 041 58	20 352 06
50,00	1 018,65	1 576,05	2 455,48	3 739,44	5 349.60	12 919 22	21 431,44
60,00	1 117,85	1 700 35	2 611,15	3 926,48	5 568,01	13 200.36	21 775 31
85.00	1 339 22	1 975,27		4 335,30	6 043,78	13 610,03	22 516 68
150,00		2 563,42	3 672,33	5 185.77	7 025 41	15 053 98	24 025 15
165,00			3 818,23	5 357,02	7 222 00	15 301,27	24 323,14
180,00			3 956.62	5 519,04	7 407,55	15 534,17	24 603,30
288 DO	2 652 39	3 548 31	4 850 89	6 558 00	8 591 31	17 007 23	26 365 75

CORTE

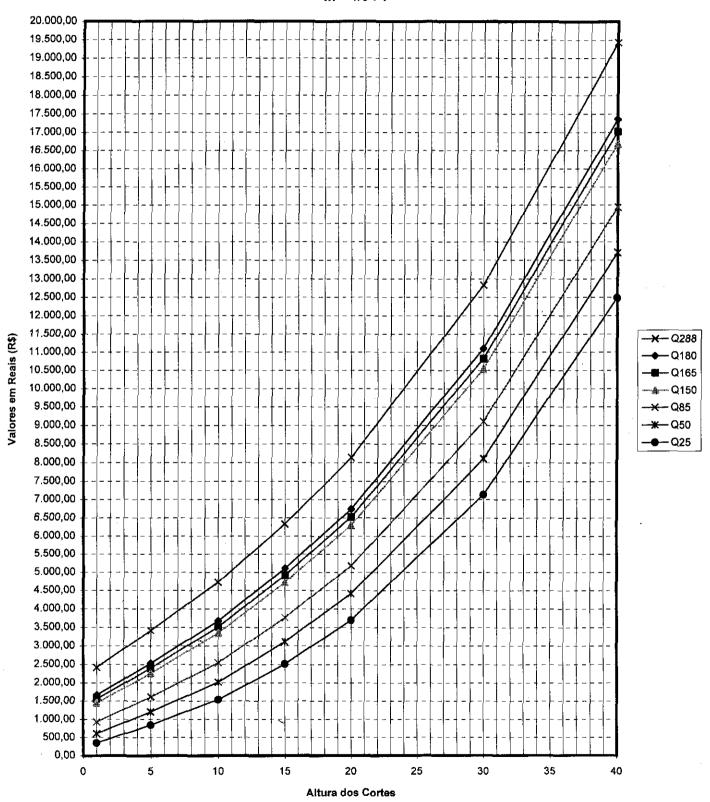
ſ	STIR	STIR	STIR	ŞTIR	STIR	STIR	STIR
	K = 71 43	K = 71 43	K = 71 43	K≈7143	K = 71 43	K = 71 43	K = 71 43
1	m = 1 3	m = 1 3	m ≈ 1 3	m = 1 3	m = 1 3	m = 1 3	m = 1 3
	Tal Ext Conte = 1 3	Tal Ext Corte = 1 3	Tal Ext. Corte = 1 3		Tal Ext Corte = 1 2 Altura do Corte em m	Tal Ext Corte = 1 1	Tal Ext. Corte = 1 1
	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m			Altura do Corte em m	Altura do Corte em m
	1	5	10	15	20	30	40
Vazão	Total	Total	Total	Total	Total	Total	Total
(m3/s)	R\$	R\$	R\$	R\$	R\$	R\$	R\$
25,00	720,83	1 156,12	1 822,01	3 054,85	4 528 16	11 824,08	20 062 61
50,00	1 011,24	1 521,54	2 281,21	3 607,81	5 174.90	12 658,36	21 084,43
60,00	1 109,68	1 643 27	2 432,05	3 787,77	5 383,97	12 925 65	21 409 95
85,00			2 763,25	4 180,91	5 839,06	13 504 64	
150,00	1 808.69	2 468,64	3 460 37	4 999,04	6 778,19	14 685,77	23 535,97
185,00		2 606,64	3 601,84	5 163.57	6 965,98	14 920,09	
180,00		2 719,13	3 735.89			15 141 41	24 081,67
288 00	2 630 89	3 452 92	4 802 26	6 318 53	8 275 28	16 538 07	25 743 47

CORTE


ſ	STIR	STIR	STIR (STIR	STIR	STIR	STIR
	K = 71 43	K = 71 43	K = 71 43	K≈7143	K = 71 43	K = 71 43	K = 71 43
	m = 1 4		m ≈ 1 4	m = 1 4	m = 1 4	m = 1 4	m = 1 4
	Tal Ext. Corte = 1 4		Tal Ext. Corte = 1 4	Tal Ext Corte = 1 2		Tal Ext. Corte = 1 1	Tal Ext. Corte = 1 1
}	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m		Altura do Corte em m	Altura do Corte em m
	1	5	10	15	20	30	40
Vazão	Total	Total	Total	Total	Total	Total	Total
(m3/s)	R\$	R\$	R\$	R\$ {	R\$	R\$	R\$
25,00	722,01	1 137,95	1 749,21	3 008,33	4 465,25	11 728.40	19 934,15
50,00	1 012,55	1 501,05	2 203,01	3 552,82	5 100,44	12 544,99	20 932,14
60,00	1 111,03	1 622 03	2 352,12	3 730,06	5 305 81	12 806,62	21 250.03
85,00	1 330,78	1 889.58	2 679,43	4 11 <u>7.</u> 12	5 752.64	13 372,95	21 935.87
150,00	1 810,04	2 462 07	3 368 44	4 922,67	6 674 70	14 528,08	23 324,05
165,00	1 909.37	2 579 26	3 507,97	5 084,54	5 858 91	14 756,96	23 597,61
180,00	2 004,42	2 691.07			7 033 55	14 973,48	23 858 02
288 00	2 631 53	3 419 91	4 496 72	6 221 38	8 143 86	16 338 11	25 474 96

Γ	STIR	STIR	ŠΠR	STIR	STIR	STIR	STIR
	۲= 71 43	K = 71 43	K = 71 43	K = 71 43	K = 71 43	K = 71 43	K = 71 43
	m = י 5	m = 1 5	m = 1 5	m = 1 5	m = * 5	m = 1 5	m = 1 5
	Tal Ext Corte = 1 5	Tal Ext Corte = 1 5	Fal Ext Corte = 1 5	Tal Ext Corte = 1 5	Ta Ext Corte = 1 5	Tal Ext. Corte = 1 4	Tal Ext Corte = 1 3
í	A'tura do Corte em m	A'tura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em ↔	A-tura do Corte em m	Altura do Corte em m
	1 .	_5	10	15	20	30	40
Vazão	Total	Total	Total	Total	Total	Total	Total
(m3/s)	R\$	R\$	R\$	R\$	R\$ j	R\$	R\$
25,00	724,04	1 128,87	1 707,98	2 569.83	3 636,09	6 858 69	11 987,11
50,00	1 015,09	1 491,14	2 159,28	3 110,16	4 265,45	7 666 11	12 972 60
60,00	1 113.72	1 611 85	2 307 59	3 286,07	4 466,95	7 924 81	13 286,49
85,00	1 333,82	1 878.79	2 633 08	3 670 12	4 911,56		
150.00	1 813,71	2 449,94	3 318,29	4 469,39			
165,00	1 913,14	2 566,82	3 457,00				
180,00	2 008.30	2 678.38	3 589 04	4 78 <u>2.</u> 46	6 180,28	10 066 00	
288 00	2 635 87	3 405 27	4 440 09	5 757 65	7 279 62	1 <u>1 41</u> 3 64	<u>17 4</u> 53 48

A2.1.47a - Curva de Custos (Custo x Altura)-


Seção STINR m = 1/4 : 1

A2.1.48a - Curva de Custos (Custo x Altura)

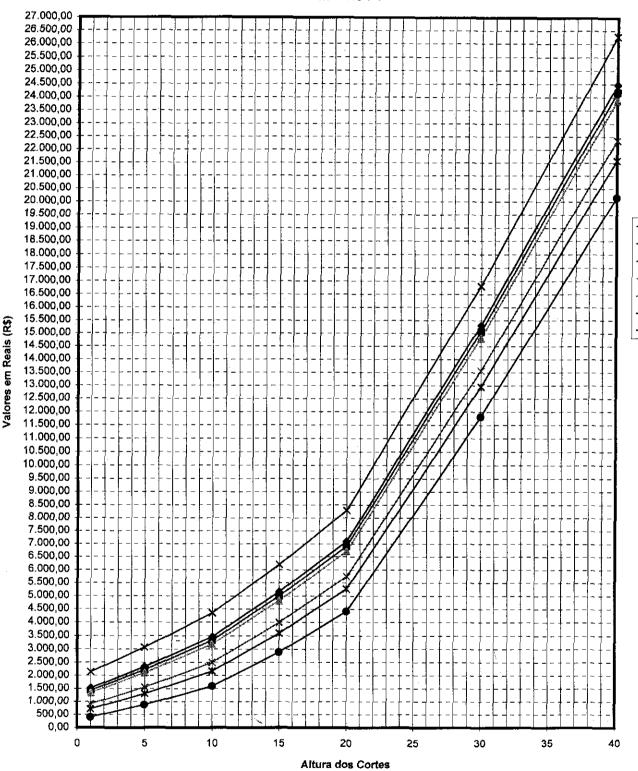
Seção STINR m = 1/5 : 1

-X − Q288

◆-- Q180

Q165

♠--- Q150


- Q50

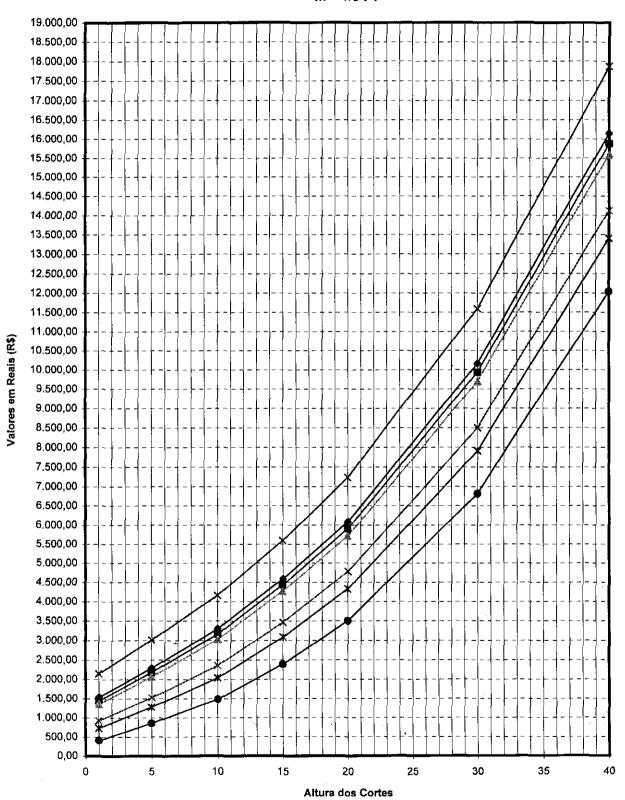
– Q25

×-- Q85

A2.1.49a - Curva de Custos (Custo x Altura)

Seção STIFR - Corte m = 1/3 : 1

CORTE


	STINR						
	K = 30 30	K ≃ 30 30	K = 30 30				
	m = 1 4	m=1 4	m = 1 4	m = 1 4	m=14	m = 1 4	m=14
	Tal Ext Corte = 1 4	Tal Ext Corte = 1 4	Tal Ext. Corte ≃ 1 4	Tal Ext Corte = 1 2	Tal Ext Corte = 1 2	Tal Ext Corte = 1 1	Tal Ext. Corte = 1 1
	Altura do Corte em m	Alfura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m
	1	5	10	15	20	30	43
Vazão	Total	Total	Total	Total	Total	Total	Total
(m3/s)	R\$	R\$	R\$	R\$	R\$	R\$	R\$
25,00	297,43	857,39	1 583.26	2 956.97	4 528,50	12 020,85	20 455,81
50,00	519,13	1 215,59	2 066,17	3 564.61	5 260,85	13 002,63	21 687,02
60,00	599,66	1 340,44	2 229,67	3 766.75	5 501,64	13 320,72	22 082,41
85,00	789,61	1 627,88	2 599,06	4 218 10	6 034,95	14 017,95	22 943,55
150,00	1 233,43	2 274,77	3 405 53	5 184,14	7 160,57	15 462,71	24 707.46
165,00	1 329,90	2 412,31	3 573,57	5 382.69	7 389,62	15 752,77	25 058,53
180,00	1 423,27	2 544,58	3 734,50	5 572.28	7 607,86	16 028,32	25 391.39
288 00	2 060 09	3 431 26	4 794 64	6 805 88	9 014 93	17 782 32	27 492 32

	STINR	STINR	STINR	\$TINR	STINR	STINR	STINR
	K = 30 30						
	m=1 5	m = 1 5	m = 1 5	rr = 1 5	m = 1 5	m=1 5	m = 1 5
	Tal Ext Corte = 1 5	Tat Ext. Corte = 1 5	Tal Ext. Corte = 1 5	Ta: Ext Corte ≂ 1 5	Tal Ext Corte = 1 5	Tal Ext Corte = 1 4	Tal Ext Corte = 1 3
	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m
	1 1	5	10	15	20	30	40
Vazão	Total	Total	Total	Total	Total	Total	Total
(m3/s)	R\$	R\$	R\$	R\$	R\$	R\$	R\$
25,00	352,35	847,36	1 539,20	2 513,78	3 692,77	7 140,82	12 494,71
50,00	611,56	1 204,57	2 018,90	3 115 97	4 417,48	8 110,50	
60,00	705,77	1 329,13	2 181,40	3 318,42	4 655,84	8 424,77	14 099,53
85,00	928 24	1 615,91	2 548,58	3 764,00	5 183,82	9 113,54	14 949,09
150,00	1 448,73	2 261,54	3 350,62	4 722,44	6 298,67	10 541,21	16 689,58
165,00	1 582,10	2 398,79	3 517,73	4 919 41	6 525,49	10 827,74	17 035,82
180,00					6 741,78	11 100,18	
288 00	2 420.93	3 415 84	4 732 56	6 332 01	8 135 87	12 833 68	19 437 32

A2.1.50a - Curva de Custos (Custo x Altura)

Seção STIFR - Corte m = 1/5 : 1

-X− Q288

CORTE

	STIFR						
	K=4700	K≈4700	K = 47 00	K = 47 0G	K = 47 00	K = 47 00	K = 47 00
	m = 1 3	m=13	m = 1 3	rr = 1 3	m = 1 3	m = 1 3	rr≈1 3
	Tal Ex Corte = 1 3	Tal Ext Corte = 1 3	Tal Ext Corte = 1 3	Tal Ext Corte = 1 2	Tal Ext Corte = 1 2	Tal Ext Corte = 1 1	Tal Ext Corte = 1 1
	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m	Altura do Corte em m
	1	5	10	15	20	30	40
Vazão	Total	Total	Total	Total	Total	Total	Total
(m3/s)	R\$	R\$	R\$	R\$	R\$	R\$	R\$
25,00	400,42	878.03	1 596,84	2 882,59	4 408,82	11 810,56	20 154,92
50,00	714,38	1 306,32	2 168,03	3 596,69	5 265 82	12 953,37	21 583,54
60 00	716,43	1 308,80	2 171,06	3 600,25	5 269,92	12 958,56	21 589,81
85.00	907,86	1 557,99	2 492.45	3 993,84	5 735,71	13 568 75	22 344,39
150.00	1 344.57	2 107.41	3 182,74	4 825.01	6 707,76	14 822,56	23 879 98
165,00	1 438,40	2 222 86	3 325,23	4 994.53	8 904,32	15 073,18	24 184,65
180 00	1 528,64	2 333,37	3 461,06	5 155,69	7 090,81	15 310,32	24 472,45
288 00	2 139 47	3 067 36	4 349 00	6 197 59	8 286 66	16 814 08	26 284 11

1	STIFR K = 48 63 m = 1 5	STIFR K = 48 63 m = 1 5	STIFR K = 48 63 m = 1 5	STIFR K = 48 63 m = 1 5	STIFR K ≈ 48 63 m = 1 5	STIFR K = 48 63 m = 1 5	STIFR K = 48 63 m ≈ 1 5
	Tal Ext Corte = 1 2 Altura do Corte em m	Tal Ext. Corte = 1 2 Altura do Corte em m	Ta' Ext Corte = 1 2 Attura do Corte em m	Tal Ext. Corte = 1 2 Altura do Corte em m	Ta. Ext Corte = 1 2 Altura do Corte err m	Tal Ext Corte = 1 4 Altura do Corte em m	Tal Ext. Corte = 1 3 Altura do Corte em m
]	1	_ 5	10	15	20	30	40
Vazão	∓otal	Total	Total	Total	Total	Total	Total
(m3/s)	R\$	_R\$	R\$	R\$	R\$	R\$	R\$
25.00	416,23	857,93	1 483.13	2 391,07	3 503,42	6 818,20	12 038,81
50.00	732,25	1 281,32	2 040,73	3 082,89	4 329,45	7 912 66	13 401,70
60,00	734,17	1 283,50	2 043,24	3 085,72	4 332,61	7 916 47	13 406 16
85 00	925,81	1 529,13	2 356,35	3 466,32	4 780,70	8 499 53	
150.00	1 361 39	2 089,82	3 028,42	4 269,77	5 715,52	9 697 11	15 584,53
165.00	1 454.69	2 183,20	3 166.91	4 433,37	5 904.23	9 936,03	
180,00	1 544,46	2 291 84	3 299,14	4 589,19	6 083,64	10 162 63	16 147,44
288 00	2 150 35	3 011 95	4 162 02	5 594 84	7 232 07	11 596 60	17 866 97